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The site of a topological space

Let

▸ X be a topological space,

▸ Xcl be the set of all open subsets of X ,

▸ cov(Xcl) be the set of families {Ui → U} which are coverings
of an U ⊆ X open.

Xcl becomes a category if we set:

Hom(U,V ) =
⎧⎪⎪⎨⎪⎪⎩

∅ if U ⊄ V

inclusion U → V if U ⊂ V .

In this category if U1 → U and U2 → U are arrows, then their fiber
product is their intersection:

U1 ×U U2 = U1 ∩U2 .



Properties of cov(Xcl)

Proposition

(T1) For Ui → U ∈ cov(Xcl) and a morphism V → U in Xcl all fibre
products Ui ×U V exist and {Ui ×U V → V } ∈ cov(Xcl).

(T2) Given {Ui → U} ∈ cov(Xcl) and a family {Vij → Ui} ∈ cov(Xcl)
for all i ∈ I , the family {Vij → U} obtained by composition of
morphisms, also belongs to cov(Xcl).

(T3) If V → U is an isomorphism in Xcl , then {V → U} ∈ cov(Xcl).

In fact, the set cov(Xcl) describes the topology of X .



Grothendieck topologies

Definition
A topology (or site) T consists of a category cat(T ) and a set
cov(T ) of coverings, i.e. families {Ui → U}i∈I of morphisms in
cat(T ), which satisfy (T1), (T2) and (T3).

Definition
A morphism f ∶ T → T ′ of topologies is a functor
f ∶ cat(T )→ cat(T ′) of the underlying categories with the
following two properties

(a) {Ui → U} ∈ cov(T )⇒ {f (Ui)
f ( )→ f (U)} ∈ cov(T ′)

(b) For {Ui → U} ∈ cov(T ) and a morphism V → U in cat(T )
the canonical morphism

f (Ui ×U V )→ f (Ui) ×f (U) f (V )

is an isomorphism for all i .



Presheaves and sheaves on topological spaces

Let C be a category (e.g. Sets or Ab).
If X is a topological space, a presheaf on X with values in C is a
functor

F ∶ X op
cl → C .

For every presheaf F of sets on X and every {Ui → U} ∈ cov(T )
there is a diagram

F (U)→∏
i

F (Ui)
pr∗1⇉
pr∗2

∏
i ,j

F (Ui ×U Uj) .

Here F (U)→∏i F (Ui) is induced by the restrictions

F (U)→ F (Ui), and ∏i F (Ui)
pr∗1→ ∏i ,j F (Ui ×U Uj) is induced by

pr∗1 ∶ F (Ui)
pr∗1→ ∏j F (Ui ×U Uj) for each i (pr∗2 similarly).



The sheaf condition

The presheaf F ∶ X op
cl → C is a sheaf, if the following holds:

(SH) For every {Ui → U} ∈ cov(T ) and every ai ∈ F (Ui), such that
pr∗1 (ai) = pr∗2 (aj) ∈ F (Ui ×U Uj)(= F (Ui ∩Uj)) for every i , j ,
there is a unique a ∈ F (U) whose pullback to F (Ui) is ai .

Equivalently:

(SH’) For every {Ui → U} ∈ cov(T ) the diagram

F (U)→∏
i

F (Ui)
pr∗1⇉
pr∗2

∏
i ,j

F (Ui ×U Uj)

has the properties:
▸ F (U)→∏i F (Ui) is injective,
▸ Im(F (U)→∏i F (Ui)) = {(ai) ∈∏i F (Ui)∣pr∗1 (ai) =
pr∗2 (aj) ∀i , j}.



Presheaves and sheaves on sites

Let C be an category and T a topology.

Definition

1. A presheaf on X with values in C is a contravariant functor

F ∶ T → C ,

2. F is a sheaf if it moreover satisfies (SH), or equivalently (SH’).

3. A morphism of (pre)sheaves F → G is a natural
transformation of functors.

Abelian presheaves and sheaves on a topology T form abelian
categories P and S.



Sheaffication

All sheaves are presheaves, so there is an inclusion functor

i ∶ S → P .

Theorem
There exist a left-adjoint functor # ∶ S → P of i .

Definition
For each F ∈ P, the sheaf F# is called the sheaf associated to the
presheaf F .

This is a universal construction in the sense, that each morphism
from F to an abelian sheaf G factors uniquely as F → F# → G .



Refinement of coverings

Definition
{U ′

j → U}j∈J → {Ui → U}i∈I if there is an ε ∶ J → I , such that
{U ′

j → U} factorizes as

U ′
j U

Uε(j)

.

↝ an inverse system of covers can be constructed.



Reminder on derived functors

▸ An abelian category C has enough injectives, if for each object
A there is a monomorphism A→ I into an injective object of
C.

▸ If F ∶ C → Ab is an additive, left-exact functor, then its
derived functor is defined as

1. Construct an injective resolution of X :

0→ X → I 0 → I 1 → I 2 . . . .

2. Apply F on it and chop off the first term:

0→ F (I 0)→ F (I 1)→ F (I 2) . . . .

3. The i-th derived functor of F on X is

R iF (X ) ∶= Ker(d i)/Im(d i−1) .



Cohomology of sheaves

S has enough injectives ⇒ we can take right derived functors.
Consider for a fixed U ∈ T the section functor

ΓU ∶ S → Ab ,

defined by ΓU(F ) = F (U). This is additive, left-exact, and

S Ab

P

i

ΓU

ΓU

Definition
For q ≥ 0, the q-th cohomology group of U with values in F is

Hq(U,F ) ∶= RqΓU(F ) .



Direct/inverse images for presheaves

Let f ∶ T → T ′ be a morphism of topologies, and P,S and P ′,S ′
be the categories of abelian (pre)sheaves on T and T ′, respectively.

Definition
If F ′ is an abelian presheaf on T ′, then its direct image f pF ′ is the
presheaf on T given by

U ↦ f pF ′(U) = F ′(f (U)) ,

for U ∈ T . This is functorial in F ′ ↝ we get an additive, exact
functor:

f ′ ∶ T ′ → T .

Theorem
The functor f p has a left adjoint fp, which is right-exact.



Direct/inverse images for sheaves

These induce functors between S and S ′ as well:

1.
f s ∶ S ′ → S , f s = # ○ f p ○ i ′ ,

2.
fs ∶ S → S ′ , fs = #′ ○ fp ○ i .



Cohomology and limits

Definition
A topology T is noetherian, if each object of T is quasi-compact.

Theorem
Assume T is noetherian, and I is a category with a sensible
definition of limit (pseudofiltered category). Then

limÐ→
I

Hq(U,Fi) ≃ Hq(U, limÐ→
I

Fi)



The implicit function theorem

Theorem
If f1,. . . ,fk are analytic functions around x ∈ Ck+n, such that

det1≤i ,j≤k ( ∂fi∂xj
) (x) ≠ 0, then the projection

(f1 = ⋅ ⋅ ⋅ = fk = 0)→ Cn

(x1, . . . , xk+n)↦ (xk+1, . . . , xk+n)

is a local analytic isomorphism around x .



This is not true in the Zariski topology of AG

Example

V (x2
1 − x2)→ A1, (x1, x2)↦ x2 .

At x = (1,1) the conditions of IFT are satisfied:

∂

∂x1
(x2

1 − x2) ∣x= 2x1 ∣x= 2 ≠ 0 .

But for all U ⊂ V (x2
1 − x2) Zariski open containing x the projection

to x2 is not even a bijection: except for finitely many values of a,
(+

√
a, a), (−

√
a, a) ∈ U ⇒ a has two preimages.

x1

x2



Étale morphisms

Definition

1. The morphism
X = SpecR[x1, . . . , xn]/(f1, . . . , fk)→ SpecR = Y is étale in

x ∈ X , if det1≤i ,j≤k ( ∂fi∂xj
) (x) ≠ 0.

2. The finite type morphism f ∶ X → Y is étale, if for all x ∈ X
there are open neighbourhoods x ∈ U ⊂ X and f (x) ∈ V ⊂ Y
such that F (U) ⊂ V and f ∣U is étale:

U SpecR[x1, . . . , xn]/(f1, . . . , fn)

V SpecR

f ∣U .



The étale site of a scheme

Idea: we change the topology in order for the IFT to hold.
We require that open subsets are given by étale morphisms.
↝ we need a Grothendieck topology!

Definition

▸ Et/X = category of étale X -schemes
▸ ob(Et/X ) = {Y → X étale}
▸ Hom(Y1 → X ,Y2 → X ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 Y2

X

commutative

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭



The étale site of a scheme

Definition

▸ A family {X ′
i

ϕi→ X ′} of morphisms in Et/X is called surjective
if X ′ = ⋃i ϕi(X ′

i )
▸ The étale site Xét of X :

▸ cat(Xét) = Et/X ,
▸ cov(Xét) = set of surjective families of morphisms in Et/X .
▸ Remark: these satisfy the axioms T1, T2 and T3.

▸ X̃ét = category of abelian sheaves on Xét.



Zariski and étale cohomology

Proposition

Open immersions are étale.

Corollary

1. Let XZar be the topology of open sets of the scheme X . Then
the inclusion

ε ∶ XZar → Xét

is a morphism of topologies.

2. By spectral sequence arguments there is a functorial morphism

Hp
Zar(X ,R

qεs(F ))→ Hp+q
ét (X ,F ) ,

which is in general not an isomorphism.



Equivalent conditions of étaleness

Theorem
For a morphism of schemes f ∶ X → Y the followings are
equivalent:

1. f is étale

2. f is smooth and unramified

3. f is smooth and of relative dimension 0

4. f is flat, locally of finite presentation, and for every y ∈ Y , the
fiber f −1(y) is a disjoint union of points, each of which is a
finite separable field extension of the residue field κ(y).

Proposition

Étale morphisms are preserved under composition and base change.



Cohomology of curves

Theorem
X smooth projective algebraic curve over C with genus g . Then

H0(Xan,Z) = Z ,

H1(Xan,Z) = Z2g ,

H2(Xan,Z) = Z .

Theorem
X smooth projective algebraic curve over k (algebraically closed)
with genus g . (chark ,n) = 1. Then

H0(Xét, µn) = µn(k) ,

H1(Xét, µn) = (µn(k))2g ,

H2(Xét, µn) = µn(k) .



Cohomology of fields

Let X = Spec(k) and G = Gal(ksep∣k) its absolute Galois group.

Theorem

▸ Y → X is étale ⇐⇒ Y = Spec(∏r
i=1 Li), where Li ∣k is a finite

separable extension.

▸ The functor
X̃ét → [Continous G-sets]

F ↦ limÐ→
k⊂k ′⊂ksep, finite

F (Spec(k ′))

is an equivalence of categories.

▸

Hq(Xét,F ) ≅ Hq(G , limÐ→
k ′

F (Spec(k ′)))

▸ Here the right-hand side is the Galois-cohomology.



l-adic comology

Étale cohomology yields the right cohomology theory for torsion
coefficients.
More effort is needed for coefficients in a field with characteristic 0
↝ l-adic cohomology (l ≠ chark prime):

H i(X ,Zl) = lim←Ð
ν

H i(Xét,Z/lνZ) ,

H i(X ,Ql) = H i(X ,Zl)⊗Zl
Ql .



Properties of l-adic comology

Theorem

1. The groups H i(X ,Ql) are vector spaces over Ql .

2. If X is proper over k, then they are finite dimensional.

3. Functoriality in X : if f ∶ X → Y is a morphism, then it induces
a homomorphism on the cohomologies:

f ∗ ∶ H i(Y ,Ql)→ H i(X ,Ql) .

4. H i(X ,Ql) = 0 for i > 2 dimX .

5. Künneth-formula is valid.



Properties of l-adic comology

Theorem

6. There is a cup-product structure

H i(X ,Ql) ×H j(X ,Ql)→ H i+j(X ,Ql)

defined for all i , j .

7. Poincaré duality: if X is smooth and proper over k , of
dimension n, then H2n(X ,Ql) is 1-dimensional, and the
cup-product pairing is a perfect pairing for each i , 0 ≤ i ≤ 2n.



Lefschetz fixed-point formula

Theorem
Let X be smooth and proper over k . Suppose f ∶ X → X has only
isolated fixed points, whose number is L(f ,X ). Assume moreover,
that for each fixed point x ∈ X , assume that the action of 1 − df
on Ω1

X is injective. Then

L(f ,X ) =
2n

∑
i=0

(−1)iTr(f ∗H i(X ,Ql)) .



Thank you for your attention!

Questions?


