Introduction to étale cohomology

Ádám Gyenge¹

¹ELTE TTK Department of Geometry

16 June 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- 1. Grothendieck topologies
- 2. Presheaves and sheaves on sites

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- 3. Cohomology of sheaves
- 4. Étale morphisms and sites
- 5. Some useful theorems
- 6. I-adic comology

The site of a topological space

Let

- X be a topological space,
- X_{cl} be the set of all open subsets of X,
- cov(X_{cl}) be the set of families {U_i → U} which are coverings of an U ⊆ X open.
- X_{cl} becomes a category if we set:

$$\operatorname{Hom}(U,V) = \begin{cases} \varnothing & \text{if } U \notin V \\ \text{inclusion } U \to V & \text{if } U \subset V \end{cases}.$$

In this category if $U_1 \rightarrow U$ and $U_2 \rightarrow U$ are arrows, then their fiber product is their intersection:

$$U_1\times_U U_2=U_1\cap U_2\;.$$

Properties of $cov(X_{cl})$

Proposition

- (T1) For $U_i \to U \in cov(X_{cl})$ and a morphism $V \to U$ in X_{cl} all fibre products $U_i \times_U V$ exist and $\{U_i \times_U V \to V\} \in cov(X_{cl})$.
- (T2) Given $\{U_i \rightarrow U\} \in cov(X_{cl})$ and a family $\{V_{ij} \rightarrow U_i\} \in cov(X_{cl})$ for all $i \in I$, the family $\{V_{ij} \rightarrow U\}$ obtained by composition of morphisms, also belongs to $cov(X_{cl})$.

(T3) If $V \to U$ is an isomorphism in X_{cl} , then $\{V \to U\} \in cov(X_{cl})$.

In fact, the set $cov(X_{cl})$ describes the topology of X.

Grothendieck topologies

Definition

A topology (or site) T consists of a category cat(T) and a set cov(T) of *coverings*, i.e. families $\{U_i \rightarrow U\}_{i \in I}$ of morphisms in cat(T), which satisfy (T1), (T2) and (T3).

Definition

A morphism $f: T \to T'$ of topologies is a functor $f: \operatorname{cat}(T) \to \operatorname{cat}(T')$ of the underlying categories with the following two properties

(a)
$$\{U_i \to U\} \in \operatorname{cov}(T) \Rightarrow \{f(U_i) \stackrel{f()}{\to} f(U)\} \in \operatorname{cov}(T')$$

(b) For $\{U_i \rightarrow U\} \in cov(T)$ and a morphism $V \rightarrow U$ in cat(T) the canonical morphism

$$f(U_i \times_U V) \to f(U_i) \times_{f(U)} f(V)$$

is an isomorphism for all *i*.

Presheaves and sheaves on topological spaces

Let C be a category (e.g. *Sets* or *Ab*). If *X* is a topological space, a presheaf on *X* with values in *C* is a functor

$$F: X_{cl}^{op} \to \mathcal{C}$$
 .

For every presheaf F of sets on X and every $\{U_i \rightarrow U\} \in cov(T)$ there is a diagram

$$F(U) \to \prod_{i} F(U_i) \stackrel{pr_1^*}{\underset{pr_2^*}{\Rightarrow}} \prod_{i,j} F(U_i \times_U U_j) .$$

Here $F(U) \to \prod_i F(U_i)$ is induced by the restrictions $F(U) \to F(U_i)$, and $\prod_i F(U_i) \stackrel{pr_1^*}{\to} \prod_{i,j} F(U_i \times_U U_j)$ is induced by $pr_1^* : F(U_i) \stackrel{pr_1^*}{\to} \prod_j F(U_i \times_U U_j)$ for each $i (pr_2^* \text{ similarly})$.

The sheaf condition

The presheaf $F : X_{cl}^{op} \to C$ is a sheaf, if the following holds: (SH) For every $\{U_i \to U\} \in cov(T)$ and every $a_i \in F(U_i)$, such that $pr_1^*(a_i) = pr_2^*(a_j) \in F(U_i \times_U U_j) (= F(U_i \cap U_j))$ for every i, j, there is a unique $a \in F(U)$ whose pullback to $F(U_i)$ is a_i . Equivalently:

(SH') For every $\{U_i \rightarrow U\} \in \operatorname{cov}(T)$ the diagram

$$F(U) \to \prod_{i} F(U_{i}) \stackrel{\rho r_{1}^{*}}{\underset{\rho r_{2}^{*}}{\Rightarrow}} \prod_{i,j} F(U_{i} \times_{U} U_{j})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

has the properties:

- $F(U) \rightarrow \prod_i F(U_i)$ is injective,
- $\operatorname{Im}(F(U) \to \prod_i F(U_i)) = \{(a_i) \in \prod_i F(U_i) | pr_1^*(a_i) = pr_2^*(a_j) \forall i, j\}.$

Presheaves and sheaves on sites

Let ${\mathcal C}$ be an category and ${\mathcal T}$ a topology.

Definition

1. A presheaf on X with values in C is a contravariant functor

 $F:T\to \mathcal{C}$,

- 2. F is a sheaf if it moreover satisfies (SH), or equivalently (SH').
- 3. A morphism of (pre)sheaves $F \rightarrow G$ is a natural transformation of functors.

Abelian presheaves and sheaves on a topology T form abelian categories \mathcal{P} and \mathcal{S} .

Sheaffication

All sheaves are presheaves, so there is an inclusion functor

 $i:\mathcal{S}\to\mathcal{P}$.

Theorem There exist a left-adjoint functor $\#: S \to P$ of *i*.

Definition

For each $F \in \mathcal{P}$, the sheaf $F^{\#}$ is called the *sheaf associated to the presheaf* F.

This is a universal construction in the sense, that each morphism from F to an abelian sheaf G factors uniquely as $F \rightarrow F^{\#} \rightarrow G$.

Refinement of coverings

Definition $\{U'_j \rightarrow U\}_{j \in J} \rightarrow \{U_i \rightarrow U\}_{i \in I}$ if there is an $\varepsilon : J \rightarrow I$, such that $\{U'_j \rightarrow U\}$ factorizes as

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \sim an inverse system of covers can be constructed.

Reminder on derived functors

- An abelian category C has enough injectives, if for each object A there is a monomorphism A → I into an injective object of C.
- If F : C → Ab is an additive, left-exact functor, then its derived functor is defined as
 - 1. Construct an injective resolution of X:

$$0 \to X \to I^0 \to I^1 \to I^2 \dots$$

2. Apply F on it and chop off the first term:

$$0 \to F(I^0) \to F(I^1) \to F(I^2) \dots$$

3. The *i*-th derived functor of F on X is

$$R^iF(X)\coloneqq \operatorname{Ker}(d^i)/\mathrm{Im}(d^{i-1})\;.$$

Cohomology of sheaves

S has enough injectives \Rightarrow we can take right derived functors. Consider for a fixed $U \in T$ the section functor

 $\Gamma_U: \mathcal{S} \to \mathcal{A}b ,$

defined by $\Gamma_U(F) = F(U)$. This is additive, left-exact, and

Definition

For $q \ge 0$, the q-th cohomology group of U with values in F is

$$H^q(U,F) \coloneqq R^q \Gamma_U(F)$$

Direct/inverse images for presheaves

Let $f : T \to T'$ be a morphism of topologies, and \mathcal{P}, \mathcal{S} and $\mathcal{P}', \mathcal{S}'$ be the categories of abelian (pre)sheaves on T and T', respectively.

Definition

If F' is an abelian presheaf on T', then its *direct image* f^pF' is the presheaf on T given by

$$U \mapsto f^p F'(U) = F'(f(U)) ,$$

for $U \in T$. This is functorial in $F' \rightsquigarrow$ we get an additive, exact functor:

$$f':T'\to T \ .$$

Theorem

The functor f^p has a left adjoint f_p , which is right-exact.

Direct/inverse images for sheaves

These induce functors between S and S' as well: 1. $f^{s}: S' \to S$, $f^{s} = \# \circ f^{p} \circ i'$, 2. $f_{s}: S \to S'$, $f_{s} = \#' \circ f_{p} \circ i$.

Cohomology and limits

Definition

A topology T is noetherian, if each object of T is quasi-compact.

Theorem

Assume T is noetherian, and \mathcal{I} is a category with a sensible definition of limit (pseudofiltered category). Then

$$\varinjlim_{\mathcal{I}} H^q(U,F_i) \simeq H^q(U,\limsup_{\mathcal{I}} F_i)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The implicit function theorem

Theorem If f_1, \ldots, f_k are analytic functions around $x \in \mathbb{C}^{k+n}$, such that $\det_{1 \le i, j \le k} \left(\frac{\partial f_i}{\partial x_j} \right)(x) \neq 0$, then the projection

$$(f_1 = \cdots = f_k = 0) \rightarrow \mathbb{C}'$$

$$(x_1,\ldots,x_{k+n})\mapsto (x_{k+1},\ldots,x_{k+n})$$

is a local analytic isomorphism around x.

This is not true in the Zariski topology of AG Example

$$V(x_1^2 - x_2) \to \mathbb{A}^1, \quad (x_1, x_2) \mapsto x_2 .$$

At x = (1,1) the conditions of IFT are satisfied:

$$\frac{\partial}{\partial x_1}(x_1^2 - x_2) \mid_x = 2x_1 \mid_x = 2 \neq 0.$$

But for all $U \subset V(x_1^2 - x_2)$ Zariski open containing x the projection to x_2 is not even a bijection: except for finitely many values of a, $(+\sqrt{a}, a), (-\sqrt{a}, a) \in U \Rightarrow a$ has two preimages.

Étale morphisms

Definition

- 1. The morphism
 - $$\begin{split} &X = \operatorname{Spec} R[x_1, \dots, x_n]/(f_1, \dots, f_k) \to \operatorname{Spec} R = Y \text{ is } \acute{e}tale \text{ in } \\ &x \in X, \text{ if } \det_{1 \leq i, j \leq k} \left(\frac{\partial f_i}{\partial x_j} \right)(x) \neq 0. \end{split}$$
- The finite type morphism f : X → Y is étale, if for all x ∈ X there are open neighbourhoods x ∈ U ⊂ X and f(x) ∈ V ⊂ Y such that F(U) ⊂ V and f|U is étale:

The étale site of a scheme

Idea: we change the topology in order for the IFT to hold. We require that open subsets are given by étale morphisms. ~ we need a Grothendieck topology!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Þ

$$Et/X = \text{category of étale } X - \text{schemes}$$

$$\circ \text{ ob}(Et/X) = \{Y \to X \text{ étale}\}$$

$$\circ \text{ Hom}(Y_1 \to X, Y_2 \to X) =$$

$$\begin{cases}Y_1 \longrightarrow Y_2 \\ & \swarrow \\ & \chi \\ &$$

The étale site of a scheme

Definition

- A family $\{X'_i \xrightarrow{\varphi_i} X'\}$ of morphisms in Et/X is called *surjective* if $X' = \bigcup_i \varphi_i(X'_i)$
- The étale site $X_{\text{ét}}$ of X:
 - $\operatorname{cat}(X_{\operatorname{\acute{e}t}}) = Et/X$,
 - $cov(X_{et})$ = set of surjective families of morphisms in Et/X.

- Remark: these satisfy the axioms T1, T2 and T3.
- $\tilde{X}_{\text{ét}}$ = category of abelian sheaves on $X_{\text{ét}}$.

Zariski and étale cohomology

Proposition Open immersions are étale.

Corollary

1. Let X_{Zar} be the topology of open sets of the scheme X. Then the inclusion

$$\varepsilon: X_{Zar} \to X_{\acute{e}t}$$

is a morphism of topologies.

2. By spectral sequence arguments there is a functorial morphism

$$H^p_{Zar}(X, R^q \varepsilon^s(F)) \to H^{p+q}_{\acute{e}t}(X, F) \; ,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which is in general not an isomorphism.

Equivalent conditions of étaleness

Theorem

For a morphism of schemes $f : X \rightarrow Y$ the followings are equivalent:

- 1. f is étale
- 2. f is smooth and unramified
- 3. f is smooth and of relative dimension 0
- f is flat, locally of finite presentation, and for every y ∈ Y, the fiber f⁻¹(y) is a disjoint union of points, each of which is a finite separable field extension of the residue field κ(y).

Proposition

Étale morphisms are preserved under composition and base change.

Cohomology of curves

Theorem

X smooth projective algebraic curve over ${\mathbb C}$ with genus g. Then

$$H^{0}(X_{\mathrm{an}},\mathbb{Z}) = \mathbb{Z} ,$$

$$H^{1}(X_{\mathrm{an}},\mathbb{Z}) = \mathbb{Z}^{2g} ,$$

$$H^{2}(X_{\mathrm{an}},\mathbb{Z}) = \mathbb{Z} .$$

Theorem

X smooth projective algebraic curve over k (algebraically closed) with genus g. (chark, n) = 1. Then

$$\begin{split} & H^0(X_{\acute{e}t},\mu_n) = \mu_n(k) \;, \\ & H^1(X_{\acute{e}t},\mu_n) = (\mu_n(k))^{2g} \;, \\ & H^2(X_{\acute{e}t},\mu_n) = \mu_n(k) \;. \end{split}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Cohomology of fields

Let X = Spec(k) and $G = \text{Gal}(k^{\text{sep}}|k)$ its absolute Galois group. Theorem

- $Y \to X$ is étale $\iff Y = \text{Spec}(\prod_{i=1}^{r} L_i)$, where $L_i | k$ is a finite separable extension.
- The functor

$$\tilde{X}_{\acute{e}t} \rightarrow [Continous \ G\text{-sets}]$$
$$F \mapsto \varinjlim_{k \subset k' \subset k^{\operatorname{sep}}, \ finite} F(\operatorname{Spec}(k'))$$

is an equivalence of categories.

$$H^q(X_{\acute{e}t},F)\cong H^q(G,\varinjlim_{k'}F(\operatorname{Spec}(k')))$$

Here the right-hand side is the Galois-cohomology.

I-adic comology

Étale cohomology yields the right cohomology theory for *torsion coefficients*.

More effort is needed for coefficients in a field with characteristic 0 \sim *I*-adic cohomology (*I* \neq char*k* prime):

$$H^{i}(X,\mathbb{Z}_{I}) = \lim_{\nu} H^{i}(X_{\text{\acute{e}t}},\mathbb{Z}/I^{\nu}\mathbb{Z}) ,$$
$$H^{i}(X,\mathbb{Q}_{I}) = H^{i}(X,\mathbb{Z}_{I}) \otimes_{\mathbb{Z}_{I}} \mathbb{Q}_{I} .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of I-adic comology

Theorem

- 1. The groups $H^i(X, \mathbb{Q}_l)$ are vector spaces over \mathbb{Q}_l .
- 2. If X is proper over k, then they are finite dimensional.
- 3. Functoriality in X: if $f : X \rightarrow Y$ is a morphism, then it induces a homomorphism on the cohomologies:

$$f^*: H^i(Y, \mathbb{Q}_I) \to H^i(X, \mathbb{Q}_I)$$
.

- 4. $H^{i}(X, \mathbb{Q}_{I}) = 0$ for $i > 2 \dim X$.
- 5. Künneth-formula is valid.

Properties of I-adic comology

Theorem

6. There is a cup-product structure

 $H^i(X,\mathbb{Q}_l)\times H^j(X,\mathbb{Q}_l)\to H^{i+j}(X,\mathbb{Q}_l)$

defined for all i, j.

 Poincaré duality: if X is smooth and proper over k, of dimension n, then H²ⁿ(X,Q₁) is 1-dimensional, and the cup-product pairing is a perfect pairing for each i, 0 ≤ i ≤ 2n.

Lefschetz fixed-point formula

Theorem

Let X be smooth and proper over k. Suppose $f : X \to X$ has only isolated fixed points, whose number is L(f, X). Assume moreover, that for each fixed point $x \in X$, assume that the action of 1 - df on Ω_X^1 is injective. Then

$$L(f,X) = \sum_{i=0}^{2n} (-1)^{i} \operatorname{Tr}(f^{*}H^{i}(X,\mathbb{Q}_{I})) .$$

Thank you for your attention! Questions?