Conformal Field Theory Learning Seminar

Time: Tuesday 16-18 / Fridays 12-14
Location: ELTE TTK É-4.51 / Rényi Kutyás
Literature:
[1] Schottenloher, A Mathematical Introduction to Conformal Field Theory
[2] Segal, The Definition of Conformal Field Theory
[3] Frenkel, Lectures on the Langlands program and conformal field theory
[4] Francesco et. al., Conformal Field Theory
[5] Frenkel, Ben-Zvi, Vertex Algebras and Algebraic Curves

Tentative schedule for 2014/15/2:


Date
Speaker
Topic
Reading
Jan. 6
Gábor
2D CFT, OS Axiom
[1] Ch 9
Jan. 13
Gábor
Ward Identities, Energy-Impulse Tensor
[1] Ch 9
Jan. 20
Gábor
OPE
[1] Ch 9
Febr. 3
Ádám
Operator Algebra
[4] Ch 6
Febr. 10
Ádám
Conformal Vertex Algebras
[1] 10.5-10.6, [5] Ch 2,3
Febr. 17
Gyula
Modules of Vertex Algebras [5] Ch 5
Febr. 24
Gyula
Bundles of Vertex Algebras [5] Ch 6,8
Febr. 27
András Szenes


March 3
Gyula
Conformal Blocks in Vertex Algebras [5] Ch 9
March 6
Bence
CFT on the Torus
[4] 10.1, 10.2
March 10
Peti
Fusion, Verlinde-formula, Modular Invariance
[4] (10.6?) 10.7, 10.8 (8.4?)


Spring Break



Richard Szabo

Apr. 21
Szilárd
Affine Lie Algebras and their Representations
[4] Ch 13,14
Apr. 24
Gábor Takács
WZW I.
[4] Ch 15
May 8
Gábor Takács
WZW II. [4] Ch 15
May 12
Péter Vecsernyés
Fusion Rings, Modular Categories [2]
May 19
Péter Bántay
Modular Representations
[2]
May 22
László Fehér The WZW Hamiltonian System and its Reductions hep-th/9912173
May 26
Szilárd
Moduli of Vector Bundles and Theta-Function I.
May 29
Szilárd
Moduli of Vector Bundles and Theta-Function II.


Schedule for 2014/15/1:

Date
Speaker
Topic
Reading
Sept. 16
Bence
Conformal Transformations and Conformal Killing Fields
[1] Ch 1
Sept. 23
Keon
The Conformal Group
[1] Ch 2
Sept. 30
Péter
Central Extensions of Groups and Lie Algebras I.
[1] Ch 3
Oct. 7
Péter
Central Extensions of Groups and Lie Algebras II. [1] Ch 4
Oct. 14
Szilárd
The Virasoro Algebra and its Representation Theory I.
[1] Ch 5
Oct. 21
Szilárd
The Virasoro Algebra and its Representation Theory II. [1] Ch 6, [2] Ch 2
Oct. 28
Szilárd
The Virasoro Algebra and its Representation Theory III.
[1] Ch 6
Nov. 4
Zoltán Bajnok
String theory as a CFT
[1] Ch 7
Nov. 11
Gábor
Axioms of RQFT
[1] Ch 8, [2] Ch 3
Nov. 18
Gábor
2D CFT
[1] Ch 9
Nov. 25
Ádám
Vertex algebras I.
[1] 10.1-10.4
Dec. 2
András Szenes
The Verlinde Formula
[1] Ch 11