
Notes by László Fehér for the lecture on 22 May 2015

1 WZNW Hamiltonian system

Consider a simple Lie group G with Lie algebra G. The WZNW phase space is

M = T ∗G̃ = G̃× G̃ = { (g, J) | g ∈ G̃, J ∈ G̃ },

with loop group

G̃ = C∞(S1, G)

and loop algebra

G̃ = C∞(S1,G).

The symplectic form reads

Ωκ = d
∫ 2π

0
dσTr

(
Jdgg−1

)
+

κ

2

∫ 2π

0
dσTr

(
dgg−1

)
∧

(
dgg−1

)′
Basic objects are the WZNW field g, the ‘left-current’ J and the ‘right-current’ I given

by

I = −g−1Jg + κg−1g′.

The currents are the momentum maps that generate two commuting actions of G̃ on M
that correspond respectively to left and right-translations on G̃. This means that the

following local Poisson bracket relations are valid:

{Tr (TaJ)(σ) ,Tr (TbJ)(σ̄) } = Tr ([Ta, Tb]J)(σ)δ + κTr (TaTb) δ
′

{Tr (TaI)(σ) ,Tr (Tb I)(σ̄) } = Tr ([Ta, Tb]I)(σ)δ − κTr (TaTb) δ
′

{ g(σ) ,Tr (TaJ)(σ̄) } = Tag(σ) δ

{ g(σ) ,Tr (TaI)(σ̄) } = −g(σ)Ta δ,

together with {J(σ), I(σ̄)} = 0. Here δ = δ(σ − σ̄) = 1
2π

∑
n∈Z e

in(σ−σ̄) and Ta is a basis

of G. The action generated by J is given by

Lγ : (g, J) 7→ (γg, γJγ−1 + κγ′γ−1), γ ∈ G̃.

The action generated by I is written as

Rγ : (g, J) 7→ (gγ−1, J). γ ∈ G̃.

The action Lγ leaves I invariant, while Rγ preserves J and transforms I according to the

co-adjoint action (at level −κ)

Rγ : I 7→ γIγ−1 − κγ′γ−1.
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The phase spaceM represents the initial data for the WZNW system, whose dynamics

is generated by the Hamiltonian

HWZNW =
1

2κ

∫ 2π

0
dσTr

(
J2 + I2

)
.

Denoting time by τ and introducing lightcone coordinates as

x± := τ ± σ, ∂± =
1

2
(∂τ ± ∂σ),

Hamilton’s equation can be written in the alternative forms

κ∂+g = Jg, ∂−J = 0 ⇔ κ∂−g = −gI, ∂+I = 0.

These equations imply

∂−(∂+g · g−1),

which is easily solved as follows:

g(τ, σ) = gL(x
+)gR(x

−)

where gL(x
++2π) = gL(x

+)η and gR(x
−+2π) = ηgR(x

−) with some ‘monodromy matrix’

η ∈ G.

Remark 1. The problem of chiral separation is to find good Poisson structure on

ML = {gL} and MR = {gR} such that M is recovered from ML ×MR upon ‘imposing

monodromy constraint’ ηL = ηR (ensuring the 2π-periodicity g(τ, σ + 2π) = g(τ, σ)).

Remark 2. The Poisson bracket version of the Virasoro algebra is

{W1(σ),W1(σ̄)} = −W ′
1(σ̄)δ + 2W1(σ̄)δ

′ + Cδ′′′

where C is some constant. A periodic (real or complex) ‘phase-space function’ Wa(σ) is

called a primary field with weight ∆a if

{W1(σ),Wa(σ̄)} = −W ′
a(σ̄)δ +∆aWa(σ̄)δ

′.

A classicalW-algebra is a Poisson algebra generated by a finite number of fieldsW1,W2, . . . ,WN

such that the above relations hold as well as

{Wb(σ),Wc(σ̄)} =
∑
i

P i
bc(W1(σ̄), . . . ,WN(σ̄))δ

(i)(σ − σ̄).

such that on the right hand side we have a finite sum and the P i
bc are differential poly-

nomials in the basic fields (with constant terms allowed).
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2 The WZNW −→ Toda reduction

Let G now be a spit real form of a complex simple Lie algebra (or we can tolerate to

work with the complex field) and G a corresponding connected Lie group. Let S0 be a

diagonalizable element of G that is part of an sl2 triple

S = {S−, S0, S+} ⊂ G with [S0, S±] = ±S±, [S+, S−] = 2S0.

Suppose (for simplicity) that adS0 has only integer eigenvalues in G. Consider the trian-

gular decomposition

G = G− + G0 + G+

induced by the sign of the eigenvalues of adS0 , which also gives an integral grading

G = ⊕mGm.

Let G0, G± denote the connected subgroups of G corresponding to the subalgebras G0,G±.

Then there is an open subset Ǧ ⊂ G whose elements can be uniquely written in the form

g = g+g0g− with g0,± ∈ G0,±.

This is called ‘generalized Gauss decomposition’.

Now define the (conformal) Toda field equation associated with the sl2-triple to be

the following equation for a G0-valued field g0(τ, σ):

∂−(∂+g0 · g−1
0 ) = [S−, g0S+g

−1
0 ].

Claim. The above Toda equation is just the WZNW field equation for a ‘Gauss decom-

posable’ G-valued field subject to the following constraints:

π−(J) = S− and π+(I) = −S+,

where π±,0 : G → G±,0 denote the projection operators corresponding to the triangular

decomposition of G. (Here we put κ = 1.)

I explain this reduction at the level of the equation of motion, then indicate that it

is actually an example of ‘phase space reduction by first class constraints’. From the

point of view of the phase space, it is simply a case of Marsden-Weinstein reduction, but

the WZNW Hamiltonian is ‘only’ weakly invariant (which is sufficient). I also detail the

‘principal special case’.

Remark. All this works also if one replaces S0 by an arbitrary integral grading operator

H and replaces S± by arbitrary elements of H-grade ±1, but the systems associated with

sl2-triples represent the nicest class.
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3 ‘Classical Wakimoto realizations’ from reduction

Let G be a complex (or real split) simple Lie algebra and G = ⊕mGm an integral gradation,

with associated ‘triangular’ decomposition

G = G− + G0 + G+.

Similarly as before, denote by G0, G± the corresponding connected subgroups of a con-

nected Lie group G with Lie algebra G. Moreover, introduce the parabolic subgroup

P < G and its Lie algebra:

P = G0G+, P = (G0 + G+).

We identify

G∗ ≃ G, G∗
− ≃ G+, G∗

0 ≃ G0

by means of the (normalized) Killing form. By using right-trivialization, we have

T ∗G− = G− × G∗
− ≃ G− × G+ = {(g−, j)}.

3.1 The finite-dimensional case

Claim. The map

I : T ∗G− × G0 → G

given by the formula

I(g−, j, j0) = g−1
− (−j + j0)g−

is a Poisson map.

Proof: ‘Clever’ application of symplectic reduction of T ∗Ǧ. The symmetry group used in

the reduction is P . Note that notationwise we ‘pretend’ to deal with a matrix Lie group.

It is instructive to describe the result in terms of Darboux coordinates on T ∗G− as well.

3.2 The infinite-dimensional case

Let j0 be an affine Kac-Moody current at level −κ, which means that it obeys the Poisson

bracket relations

{Tr (Yi j0(σ)) , Tr (Yl j0(σ̄)) } = Tr ([Yi, Yl] j0(σ))δ − κTr (Yi Yl) δ
′,

where Yi is a basis of G0. Consider also the cotangent bundle

T ∗G̃− = G̃− × G̃+ = {(g−, j) | g− ∈ C∞(S1, G−), j ∈ C∞(S1,G+) },
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on which the non-vanishing fundamental Poisson bracket read as follows:

{Tr (Vα j)(σ) , Tr (Vβ j)(σ̄) } = Tr ([Vα, Vβ] j)(σ) δ,

{ g−(σ) , Tr (Vα j)(σ̄) } = Vα g−(σ) δ,

where Vα is a basis of G−. Denote by V β the dual basis of G+, Tr (V
βVα) = δβα. Let qα

be some global coordinates on G−. Define

Nαβ(q) ≡ Tr (V β ∂g−
∂qα

g−1
− ).

Then

j = j(q, p) = N−1
αβ (q)p

βV α

in terms of the canonical (Darboux) coordinates qα(σ), p
β(σ) on T ∗G̃−. Note that∫

S1
dTr

(
jdg−g

−1
−

)
=

∫
S1

d (pαdqα) ,

and therefore

{qα(σ), pβ(σ̄)} = δβαδ(σ − σ̄).

The classical Wakimoto realization is given by the statement:

Claim. As a consequence of the PBs of j0 and qα, p
β above, the ‘classical Wakimoto

current’

I(q, p, j0) = I(g−(q), j(q, p), j0) = g−1
− (−j + j0)g− + κg−1

− g′−

satisfies the affine Kac-Moody Poisson brackets

{Tr (Ta I)(σ) , Tr (Tb I)(σ̄) } = Tr ([Ta, Tb] I)(σ)δ − κTr (Ta Tb) δ
′,

where {Ta} is a basis of G. The affine ‘Sugawara-density’ is quadratic in the ‘free field

constituents’,

1

2κ
Tr (I2) =

1

2κ
Tr (j20)− Tr (jg′−g

−1
− ) =

1

2κ
Tr (j20)−

∑
α

pαq′α.

Proof: By reduction of the (big cell of the) WZNW phase space T ∗G̃ definded by retricting

the G-valued WZNW field to vary in Ǧ = G+G0G−. The symmetry group used in the

reduction is P̃ .

Remark. The generalized Wakimoto realization of the affine Kac-Moody algebra used

in CFT is obtained by direct quantization. (Due to normal ordering ambiguities, there

is a quantum correction, which – with Jan de Boer – we have determined explicitly. The

procedure requires choosing qα to be ‘upper triangular coordinates’ on G−. For example,

exponential coordinates associated with any graded basis of G− are appropriate.
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4 Classical W-algebras from reduction

We again use the sl2-triple S−, S0, S+ and for simplicity assume that adS0 has only integer

eigenvalues.

We consider the affine Kac-Moody current algebra

{Tr (TaJ)(σ) ,Tr (TbJ)(σ̄) } = Tr ([Ta, Tb]J)(σ)δ + κTr (TaTb) δ
′

on the phase space C∞(S1,G). Now we apply reduction by using the Hamiltonian action

of the group

N = C∞(S1, G+),

which operates by the formula:

Lγ : J 7→ γJγ−1 + κγ′γ−1, γ ∈ N.

This is generated by the momentum map

J 7→ π−(J).

The reduction of interest is defined by imposing the (first class) momentummap constraint1

π−(J) = S−.

The (isotropy) gauge group is the full group C∞(S1, G+), and therefore the reduced phase

space is

{J = S− + j | j ∈ C∞(S1,G0 + G+ }/N.

Basic algebraic fact:

G0 ⊕ G+ = [G+, S−]⊕Ker(adS+).

Claim 1. The action of N on the ‘constraint surface’ is free. The subspace of constrained

currents given by

W = {J = S− +W | W ∈ C∞(S1,Ker(adS+))}

is a global cross section for the N -action, and thus yields a model of the reduced phase

space. For any J = (S− + j), the equation

γ(S− + j)γ−1 + κγ′γ−1 = S− +W, W ∈ C∞(S1,Ker(adS+))

has a unique solution for γ. The components of the resulting log γ are differential poly-

nomials in the components of j. Consequently, the ring of gauge invariant differential

polynomials of j is freely generated by the components of resulting function W = W (j).

1This is the same that was used in the WZNW−→Toda reduction!
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Claim 2. Take a homogeneous basis {Fa} of Ker(adS+),

F1 :=
κ

Tr (S+S−)
S+, [S0, Fa] := (∆a − 1)Fa,

and decompose

W (j) =
∑
a

Wa(j)Fa.

Then the induced Poisson brackets of the gauge invariant differential polynomials

Wa(σ) = Wa(j(σ))

yield a classical W-algebra, where W1 is a Virasoro density and Wa for a ̸= 1 is a primary

field of conformal weight ∆a.

Remark 1. The Virasoro density W1 is inherited from the modified Sugawara density,

L =
1

2κ
Tr (J2)− Tr (S0J

′)

which yields a gauge invariant differential polynomial on the constraint surface. The

global cross section exhibited in ‘Claim 1’ is often called the ‘highest weight gauge’.

Remark 2. It follows that the conformal Toda field theories realize the chiralW-algebras

as their symmetry structures.

Remark 3. The case of half-integral sl2-triples is a small variation, which I can explain

at the blackboard.

5 WZNW factory of classical dynamical r-matrices

The main products of this factory are the possible Poisson structures carried by the chiral

WZNW fields gL and gR, regarded as independent, i.e., ‘before’ imposing the monodromy

constraint. These Poisson structures are encoded by interesting dynamical r-matrices,

which solve various generalizations of the classical Yang-Baxter equation. See e.g. my

review in arXiv:hep-th/0212006.
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6 Some references

My lecture was based mainly on the papers listed below. Unfortunately, the conventions

of these papers are not always the same. Here, I tried to follow a unified set of conventions.

For the WZNW Hamiltonian system, see e.g. hep-th/9912173 and references therein.

Section 2 was based on L. Feher et al: Ann. Phys. 213, 1-20 (1992)). There are still

many open problems about global issues, which are studied in the lowest rank case in

the paper arXiv:hep-th/9703045.

Our Wakimoto stuff is contained in arXiv:hep-th/9605102, arXiv:hep-th/9611083 and

in arXiv:math/0305268 (the last paper is phrased in the language of vertex algebras).

About classical W-algebras, the ‘highest weight gauge’ was originally found in the

case of the principal sl2 subalgebra in J. Balog et al: Ann. Phys. 203, 76-136 (1990).

The case of a general sl2 embeddings is treated, for example, in arXiv:hep-th/9304125.

Final remark. If anybody wishes it, I am happy to explain the proof of any of the

‘claims’ and remarks formulated in these notes. Actually I have prepared to give proofs

on Friday, but badly miscalculated the time. I should also note that not all ‘claims’ were

our results. Proper credits are given in the references. (If somebody is interested, I can

send the references that are not in the arXiv.)

8


