Euler characteristics of Hilbert schemes of points on simple singularities

 $\operatorname{\acute{A}dam}$ Gyenge¹

¹MTA Alfréd Rényi Institute of Mathematics

7 January 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

- 1. arXiv:1510.02677
- 2. arXiv:1512.06844
- 3. arXiv:1512.06848

Some parts are joint works with my supervisors, András Némethi and Balázs Szendrői.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- 1. Hilbert scheme of points
- 2. Curves and smooth surfacs
- 3. The orbifold and coarse Hilbert schemes
- 4. Quiver varieties and representations of affine Lie-algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 5. The A_n case
- 6. Overview of the D_n case
- 7. The S-duality conjecture

Hilbert scheme of points

Let X be a quasiprojective variety over \mathbb{C} .

Definition (Theorem)

For every $n \in \mathbb{N}$ there is a Hilbert scheme $\operatorname{Hilb}^{n}(X)$, which parametrizes 0 dimensional subschemes (ideal sheaves) of colength n on X.

Remark

- 1. Hilbⁿ(X) represents a moduli functor.
- 2. Every $Z \in \operatorname{Hilb}^{n}(X)$ decomposes as $Z = \coprod Z_{j}$, where the supports $P_{j} = \operatorname{Supp} Z_{j}$ are mutually disjoint.
- 3. colength (Z, P_j) = length (\mathcal{O}_{Z, P_j}) .
- 4. Hilbert-Chow morphism

$$\Pi: \mathrm{Hilb}^n(X) \to S^n X, \quad I \mapsto \sum_j \mathrm{colength}(Z, P_j) P_j$$

Hilbert scheme of points

Relative version: For $Y \subset X$ a (locally) closed subvariety: Hilbⁿ(X, Y) \subset Hilbⁿ(X) is the Hilbert scheme of points (set-theoretically) supported on Y.

Question: From topological/analytical properties of X what can we infere about the topology of $Hilb^n(X)$?

Usually: better to work with the collection of the Hilbert schemes for all n together.

Curves

C curve over \mathbb{C} with singularities $p_i \rightsquigarrow C_{sm} = C \setminus \coprod_i p_i$ smooth part

$$\begin{split} Z_{C} &= \sum_{n=0}^{\infty} \chi(\operatorname{Hilb}^{n}(C)) q^{n} \\ &= \sum_{n=0}^{\infty} \sum_{n_{0}+\dots=n} \chi(\operatorname{Hilb}^{n_{0}}(C_{sm})) q^{n_{0}} \prod_{i} \chi(\operatorname{Hilb}^{n_{i}}(C,p_{i})) q^{n_{i}} \\ &= Z_{C_{sm}}(q) \prod_{i} \underbrace{\left(\sum_{n=0}^{\infty} \chi(\operatorname{Hilb}^{n}(C,p_{i})) q^{n}\right)}_{Z_{(C,p_{i})}(q)} \end{split}$$

Theorem (Macdonald)

$$Z_{C_{sm}}(q) = \frac{1}{(1-q)^{\chi(C_{sm})}}$$

Plane curve singularities

(C,0) a plane curve singularity with link $L_{(C,0)} \subseteq S^3$ and Milnor-number μ

Theorem (Maulik, conjecture of Oblomkov-Shende)

$$Z_{(C,0)}(q^2) = \frac{1}{q^2} \left[\left(\frac{q}{a} \right)^{\mu} P(L_{(C,0)}) \right] \Big|_{a=0},$$

where $P(L) \in \mathbb{Z}[a^{\pm}, (q - q^{-1})^{\pm}]$ is the HOMFLY polynomial of the link L.

Corollary

The topology of the link (i.e. its embedding type) determines $Z_{(C,p)}(q)$

Smooth surfaces

Theorem (Fogarty)

If X is a smooth surface over \mathbb{C} then:

- 1. Hilbⁿ(X) is smooth of dimension 2n
- 2. Π : Hilbⁿ(X) \rightarrow SⁿX is a resolution of singularities

Theorem (Göttsche)

$$\sum_{n=0}^{\infty} P_t(\operatorname{Hilb}^n(X))q^n$$
$$= \prod_{n=1}^{\infty} \frac{(1+t^{2n-1}q^n)^{b_1(X)}(1+t^{2n+1}q^n)^{b_3(X)}}{(1+t^{2n-2}q^n)^{b_0(X)}(1+t^{2n}q^n)^{b_2(X)}(1+t^{2n+2}q^n)^{b_4(X)}}$$

Corollary

$$Z_X(q) = \prod_{i=1}^{\infty} \frac{1}{(1-q^n)^{\chi(S)}}$$

Affine plane

Theorem (Barth, Nakajima) Hilbⁿ(\mathbb{C}^2) is the quiver variety corresponding to the Jordan quiver with dimension vectors $\mathbf{v} = (n)$, $\mathbf{w} = (1)$. That is

 $\mathrm{Hilb}^{\mathrm{n}}(\mathbb{C}^2) = \{(B_1, B_2, i, j) \mid [B_1, B_2] + ij = 0\} / / \mathrm{Gl}_n(\mathbb{C}) ,$

where $B_1, B_2 \in \text{End}(\mathbb{C}^n)$, $i \in \text{Hom}(\mathbb{C}, \mathbb{C}^n)$, $j \in \text{Hom}(\mathbb{C}^n, \mathbb{C})$, $g \in \text{Gl}_n(\mathbb{C})$ acts as

$$g \cdot (B_1, B_2, i, j) = (gB_1g^{-1}, gB_2g^{-1}, gi, jg^{-1}),$$

and // is the GIT quotient for some stability condition.

Affine plane

$$Z_{\mathbb{C}^2}(q) = \prod_{i=1}^{\infty} \frac{1}{(1-q^n)} = \sum_{n\geq 0} p(n)q^n$$
.

This is the character formula for $\mathcal{F},$ the Fock space representation of the Heisenberg algebra.

Recall:

•
$$\mathcal{F} = \bigoplus_{\lambda \in \mathcal{P}} \mathbb{C}\lambda$$
,

•
$$p(\lambda) = \sum_{1 \text{ block added }} \lambda'$$
,

•
$$q(\lambda) = \sum_{1 \text{ block removed }} \lambda'$$
,

$$\bullet [p,q] = Id.$$

Theorem (Nakajima, Grojnowski)

$$H^*(\mathrm{Hilb}(\mathbb{C}^2)) = \bigoplus_{n=0}^{\infty} H^*(\mathrm{Hilb}^n(\mathbb{C}^2)) \cong \mathcal{F}$$

Coarse Hilbert scheme

 $G \subset Sl_2(\mathbb{C})$ finite subgroup, acting on \mathbb{C}^2 . \mathbb{C}^2/G qoutient variety with an orbifold structure.

Definition

Coarse (invariant) Hilbert scheme:

$$\operatorname{Hilb}(\mathbb{C}^2/G) = \{ Z \triangleleft \mathbb{C}[x, y]^G | Z \text{ is of finite colength} \}.$$

As before, this decomposes as

$$\operatorname{Hilb}(\mathbb{C}^2/G) = \coprod_{m \in \mathbb{N}} \operatorname{Hilb}^m(\mathbb{C}^2/G) .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orbifold Hilbert schemes

Definition Orbifold (equivariant) Hilbert scheme:

$$\operatorname{Hilb}([\mathbb{C}^2/G]) = \{I \in \operatorname{Hilb}(\mathbb{C}^2) \mid I \text{ is } G \text{-invariant}\}.$$

This stratifies as

$$\operatorname{Hilb}([\mathbb{C}^2/G]) = \bigcup_{\rho \in \operatorname{Rep}(G)} \operatorname{Hilb}^{\rho}([\mathbb{C}^2/G]) ,$$

where

$$\operatorname{Hilb}^{\rho}([\mathbb{C}^2/G]) = \{I \in \operatorname{Hilb}(\mathbb{C}^2) \mid H^0(\mathcal{O}_I) = H^0(\mathcal{O}_{\mathbb{C}^2}/I) \simeq_G \rho\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generating series

Let $\rho_0, \ldots \rho_n$ be the irreducible representations of *G*. Definition

(a) Coarse generating series (or coarse partition function):

$$Z_{\mathbb{C}^2/G}(q) = \sum_{m=0}^{\infty} \chi \left(\mathrm{Hilb}^m(\mathbb{C}^2/G) \right) q^m$$

.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(b) Orbifold generating series (or Orbifold partition function):

$$Z_{[\mathbb{C}^2/G]}(q_0,\ldots,q_n) =$$

$$= \sum_{m_0,\ldots,m_n=0}^{\infty} \chi \left(\operatorname{Hilb}^{m_0 \rho_0 + \ldots + m_n \rho_n} ([\mathbb{C}^2/G]) \right) q_0^{m_0} \cdot \ldots \cdot q_n^{m_n} \cdot$$

Maps between the orbifold and coarse Hilbert schemes

 $i : \mathbb{C}[x, y]^G \subset \mathbb{C}[x, y]$ inclusion. Definition

(a) Pushforward (scheme-theoretic):

 $p_*: \mathrm{Hilb}([\mathbb{C}^2/G]) \to \mathrm{Hilb}(\mathbb{C}^2/G), \quad J \mapsto J^G = J \cap \mathbb{C}[x,y]^G \; .$

(b) Pullback (only set-theoretic):

 $i^* : \operatorname{Hilb}(\mathbb{C}^2/G)(\mathbb{C}) \to \operatorname{Hilb}([\mathbb{C}^2/G])(\mathbb{C}), \quad I \mapsto i^*I = \mathbb{C}[x, y].I.$

 $(\mathbb{C}[x,y].I)^{\mathcal{G}} = I$ for any $I \triangleleft \mathbb{C}[x,y]^{\mathcal{G}} \Longrightarrow p_* \circ i^*$ is the identity.

McKay correspondence

Finite subgroups of $Sl_2(\mathbb{C})$: $A_n(n \ge 1)$, $D_n(n \ge 4)$, E_6, E_7, E_8 . To the quotient \mathbb{C}^2/G we can associate its resolution graph:

Affine Lie algebras

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[z, z^{-1}] \oplus \mathbb{C}c \oplus \mathbb{C}d$$

$$\models [X \otimes z^m, Y \otimes z^n] = [X, Y] \otimes z^{m+n} + m\delta_{m+n,0}(X|Y)c$$

$$\models c \text{ is central}$$

• $d = -z \frac{d}{dz}$

Example

 $\hat{\mathfrak{u}}(1) = \mathfrak{heis}$ the Heisenberg algebra.

Affine simple roots: $\hat{\Delta} = \{\alpha_0, \alpha_1, \dots, \alpha_n\} = \{\alpha_0\} \cup \Delta.$

There is a natural scalar product on these \sim identification with the dual space.

Fundamental weights: $\{\omega_0, \omega_1, \ldots, \omega_n\}$.

Level I representation: when c acts as multiplication by I.

Affine Lie algebra action on the homologies

Let V_0 be the level-1 representation with highest weight ω_0 (basic representation).

Let \mathcal{F} be the standard Fock space representation of heis. Then $V = V_0 \otimes \mathcal{F}$ is a representation of $\hat{\mathfrak{g}} \oplus_c \mathfrak{heis}$ (extended basic

representation), where $\oplus_c = \oplus +$ centers identified.

Theorem (Nakajima)

 $H^*(\operatorname{Hilb}([\mathbb{C}^2/G]) \text{ carries an action of } \hat{\mathfrak{g}} \oplus_c \mathfrak{heis}, \text{ under which it is graded isomorphic to } V.$

Decomposition of V

 $Q = \mathbb{Z}\Delta$ root lattice, P weight lattice.

Theorem (Frenkel-Kac)

$$V\cong \mathcal{F}^{n+1}\otimes \mathbb{C}[Q]$$
.

Corollary (Weyl-Kac)

$$\operatorname{char}_{V}(q_{0},\ldots,q_{n}) = \sum_{\lambda \text{ occours in } V} \operatorname{mult}(\lambda) e^{\lambda} = \frac{\sum_{\overline{m}=(m_{1},\ldots,m_{n})\in\mathbb{Z}^{n}}^{\infty} q_{1}^{m_{1}}\ldots q_{n}^{m_{n}}(q^{1/2})^{\overline{m}^{\mathsf{T}}\cdot C\cdot\overline{m}}}{\prod_{m=1}^{\infty}(1-q^{m})^{n+1}},$$

where $e^{\alpha_i} = q_i$, $e^{-\delta} = e^{\sum_i a_i \alpha_i} = q$, *C* is the finite Cartan matrix. Since there are no odd cohomologies, we have

$$Z_{[\mathbb{C}^2/G]}(q_0,\ldots,q_n) = char_V(q_0,\ldots,q_n).$$

Affine crystals

Recall: the partitions (Young diagrams) give a basis for the Fock-space.

Definition (Theorem)

- 1. When \mathfrak{g} is of type A_n or D_n , then V can be constructed on a vector space, which is spanned by a *crystal basis*.
- The elements of the crystal basis are in one-to-one correspondence with a set Z of combinatorial objects, called *Young walls*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cell decomposition for orbifold Hilbert schemes

Theorem (Gy-N-Sz)

Let $[\mathbb{C}^2/G]$ be a simple singularity orbifold, where G is of type A_n for $n \ge 1$ or D_n for $n \ge 4$. Then there is an explicit decomposition of $\operatorname{Hilb}([\mathbb{C}^2/G])$ into affine cells indexed by the set of Young walls \mathcal{Z} of the appropriate type.

Corollary

$$Z_{[\mathbb{C}^2/G]}(q_0,\ldots,q_n) = \sum_{\lambda \in \mathcal{Z}} \prod_{j=0}^n q_j^{w_j(\lambda)}$$

Remark

- ▶ For A_n this was done already by Fujii-Minabe.
- This strengthens Nakajima's result.
- The RHS of the prevoius character formula enumerates the Young walls of the appropriate type.

Cell decomposition for coarse Hilbert schemes

Theorem (Gy-N-Sz)

Let \mathbb{C}^2/G be a simple singularity orbifold, where G is of type A_n for $n \ge 1$ or D_n for $n \ge 4$. Then there is specific, combinatorially defined subset $\mathcal{Z}^0 \subset \mathcal{Z}$, and an explicit decomposition of $\operatorname{Hilb}(\mathbb{C}^2/G)$ into affine cells indexed by the set of Young walls \mathcal{Z}^0 of the appropriate type. Moreover, there is a combinatorially defined mapping $\mathcal{Z} \to \mathcal{Z}^0$, such that the following diagram is commutative

where the horizontal maps associate to an ideal the Young wall of its cell.

The orbifold A_n case

G = cyclic subgroup of $Sl_2(\mathbb{C})$ of order n + 1. Generated by

$$\sigma = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix},$$

where ω is a (n+1)-st root of unity. All irreducible representations of G are one dimensional. They are given by $\rho_j: \sigma \mapsto \omega^j$, for $j \in \{0, \dots, n\}$. σ commutes with the diagonal two torus $T = (\mathbb{C}^2)$ $\implies T \curvearrowright [\mathbb{C}^2/G], T \curvearrowright \mathbb{C}^2/G$ $\implies T \curvearrowright \operatorname{Hilb}([\mathbb{C}^2/G]), T \curvearrowright \operatorname{Hilb}(\mathbb{C}^2/G).$

$(\mathbb{C}^*)^2$ fixpoints

The Young wall pattern of type A_n :

 \mathcal{Z} = Young diagrams with this coloring. For $\lambda \in Z$, let $w_j(\lambda)$ denote the number of blocks in λ labeled j. Multi-weight: $w(\lambda) = (w_0(\lambda), \dots, w_n(\lambda))$.

Proposition

- Affine cells of $\operatorname{Hilb}([\mathbb{C}^2/G]) \leftrightarrow \operatorname{Hilb}([\mathbb{C}^2/G])^T \leftrightarrow \mathcal{Z}$.
- $H^0(O_I) = \bigoplus_i \rho_i^{\oplus m_i}$ at an ideal I which is a fixpoint described by λ if and only if $(m_0, \ldots, m_n) = w(\lambda)$.

Idea of proof

- $\mathbb{C}[x, y]^T$ = monomials.
- $\operatorname{Hilb}([\mathbb{C}^2/G])^T = \operatorname{Hilb}(\mathbb{C}^2)^T = \operatorname{monomial}$ ideals.
- Choose a generic 1D-subtorus T₀ ⊂ T which has positive weight on x and y.
- Bialynizcki-Birula → all limits of T₀-orbits at t = 0 exist (eventhough Hilb([C²/G]) is not compact).
- Take the BB decomposition of $\operatorname{Hilb}([\mathbb{C}^2/G])$.

Corollary

Cells of Hilb(\mathbb{C}^2/G) \leftrightarrow Hilb(\mathbb{C}^2/G)^{*T*} \leftrightarrow monomial ideals in $\mathbb{C}[x, y]^G = \mathbb{C}[x^{n+1}, xy, y^{n+1}] \leftrightarrow 0$ -generated Young walls (where all the generators are of color 0) =: \mathbb{Z}^0 .

The A_n -abacus

The *abacus of type* A_n is:

To a diagram $\lambda \in \mathbb{Z}$ associate the infinite series of numbers: $\{\lambda_1, \lambda_2 - 1, \lambda_3 - 2, ...\}$ We put a bead on each of these numbers.

Example (n=2)

2			
0	1		
1	2		
2	0		
0	1	2	(

Cores

Border strip: a skew Young diagram which does not contain 2×2 blocks and which contains exactly one *j*-labelled block for all labels *j*.

Example

Observation: Removal of a border strip corresponds to shifting a bead up in the abacus representation.

Aim: we remove the border strips until possible \sim core.

2			
0	1		
1	2		
2	0		
0	1	2	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1	2		
2	0		
0	1	2	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1	2		
2	0		
0	1	2	0

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

-8

-5 -2

1

4

÷

Structure of the orbifold generating series

The relative positions to the highest possible places of the beads on a single ruler are described by a partition: $\mu_1 \ge \cdots \ge \mu_r \ge 0$. There are n + 1 rulers \implies for each core possible extensions by n + 1 partitions (quotients).

A border strip has weight $q = q_0 \dots q_n$.

Corollary

►

Z ↔ C × Pⁿ⁺¹ where C is the set of cores (diagrams without border strips).

$$\begin{split} & Z(q_0,\ldots,q_n) = Z_{\text{quotients}}(q) Z_{\text{cores}}(q_0,\ldots,q_n) = \\ & = \left(\prod_{m=1}^{\infty} (1-q^m)^{-1}\right)^{n+1} \sum_{\overline{m}=(m_1,\ldots,m_n)\in\mathbb{Z}^n}^{\infty} q_1^{m_1}\ldots q_n^{m_n}(q^{1/2})^{\overline{m}^\top\cdot C\cdot\overline{m}} \,, \end{split}$$

where C is the Cartan matrix of type A.

The pushforward map was induced by $I \mapsto I^G = I \cap \mathbb{C}[x, y]^G$. Thus, we have to extend the diagram of I to get the smallest 0-generated diagram which covers it.

Example

2			
0	1		
1	2		
2	0		
0	1	2	0

The pushforward map was induced by $I \mapsto I^G = I \cap \mathbb{C}[x, y]^G$. Thus, we have to extend the diagram of I to get the smallest 0-generated diagram which covers it.

Example

0

0

The pushforward map was induced by $I \mapsto I^G = I \cap \mathbb{C}[x, y]^G$. Thus, we have to extend the diagram of I to get the smallest 0-generated diagram which covers it.

Example

The pushforward map was induced by $I \mapsto I^G = I \cap \mathbb{C}[x, y]^G$. Thus, we have to extend the diagram of I to get the smallest 0-generated diagram which covers it.

Example

-2 2 1 3 4 5 6

The coarse case

So p_* combinatorially corresponds to pushing all the bead to the right as much as possible. This is the map p.

Corollary

 $\mathcal{Z}^0 \longleftrightarrow$ those abacus configurations where no bead can be moved to the right.

Using this it is possible to prove

Proposition

Let $\xi = e^{\frac{2\pi i}{n+2}}$. Then under the substitution $q_i = \xi$ $i \in \{1, ..., n\}$, $q_0 = \xi^{-n}q$ the terms in $Z_{[\mathbb{C}^2/G]}(q_0, ..., q_n)$ corresponding to the preimage of a 0-generated diagram λ_0 add up to the term corresponding to λ_0 in $Z_{\mathbb{C}^2/G}(q)$. That is

$$\sum_{\mu \in p^{-1}(\lambda_0)} \underline{q}^{\operatorname{wt}(\mu)} \Big|_{q_1 = \dots = q_n = \xi, q_0 = \xi^{-n}q} = q^{\operatorname{wt}_0(\lambda_0)}$$

The coarse generating series

Corollary

$$Z_{\mathbb{C}^2/G_\Delta}(q) =$$

$$=\left(\prod_{m=1}^{\infty}(1-q^m)^{-1}\right)^{n+1}\sum_{\overline{m}=(m_1,\ldots,m_n)\in\mathbb{Z}^n}\xi^{m_1+m_2+\cdots+m_n}(q^{1/2})^{\overline{m}^\top\cdot C_{\Delta}\cdot\overline{m}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\xi = e^{\frac{2\pi i}{n+2}}$ and C is the Cartan matrix of type A.

The general statement

Theorem

►

 $G \subset Sl_2(\mathbb{C})$ subgroup of type A_n , D_n (conjecture for E_n), C is the finite type Cartan matrix, h the (dual) Coxeter of the root system.

$$Z_{[\mathbb{C}^2/G]}(q_0,\ldots,q_n) = \frac{\sum_{\overline{m}=(m_1,\ldots,m_n)\in\mathbb{Z}^n} q_1^{m_1}\cdots q_n^{m_n}(q^{1/2})^{\overline{m}^\top\cdot C_{\Delta}\cdot\overline{m}}}{\prod_{m=1}^{\infty}(1-q^m)^{n+1}}$$

where $q = \prod_{i=0}^{n} q_i^{d_i}$ with $d_i = \dim \rho_i$, and each term corresponds to an affine cell in $\operatorname{Hilb}([\mathbb{C}^2/G]);$

$$Z_{\mathbb{C}^2/G_{\Delta}}(q) = \frac{\sum_{\overline{m}=(m_1,\ldots,m_n)\in\mathbb{Z}^r} \zeta^{m_1+m_2+\cdots+m_n}(q^{1/2})^{\overline{m}^\top\cdot C_{\Delta}\cdot\overline{m}}}{\prod_{m=1}^{\infty}(1-q^m)^{n+1}},$$

where $\zeta = e^{\frac{2\pi i}{1+h}}$, and each term corresponds to an affine cell in $\operatorname{Hilb}(\mathbb{C}^2/G)$.

The D_n case

Generated by

$$\sigma = \begin{pmatrix} \varepsilon & \mathbf{0} \\ \mathbf{0} & \varepsilon^{-1} \end{pmatrix}, \qquad \tau = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{pmatrix},$$

where ε a fixed primitive (2n-4)-th root of unity.

- Bad news: there is no compatible $(\mathbb{C}^*)^2$ action.
- Good news: there is a compatible \mathbb{C}^* action.
- Possible to show: the fixed points Hilb([C²/G])^{C*} are affine spaces parametrized by the Young walls of type D_n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There is an abacus description of these.
- The substitution works.

Young wall pattern of type D_n

				L
2	2	2	2	
0/1	$\frac{1}{0}$	$\frac{0}{1}$	$\frac{1}{0}$	
2	2	2	2	
:	:	:	:	
<i>n</i> –2	n-2	n-2	n-2	
n−X ∕n	n n-1	n−X ∕n	n n-1	
<i>n</i> -2	n-2	n-2	n-2	
÷	÷	:	÷	
2	2	2	2	
01	$\frac{1}{0}$	0/1	$\frac{1}{0}$	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Moduli spaces of torsion free sheaves

Points of $\operatorname{Hilb}^{n}(S) \longleftrightarrow$ ideal sheaves of colength n on $S \longleftrightarrow$ torsion free sheaves of rank 1, $c_1 = 0$ and $c_2 = n$. There are analogous moduli spaces for higher rank (*H*-semistable) torsion-free sheaves: $M_{S}^{H}(ch)$.

Conjecture (S-duality (Vafa, Witten))

For S a smooth projective algebraic surface the generating series

$$Z_{S}^{H}(\tau) = \sum_{ch} \chi(M_{S}^{H}(ch))q^{f(ch)}$$

with $q = e^{2\pi i \tau}$ should be a meromorphic modular form for some congruence subgroup of $SL_2(\mathbb{Z})$.

(日) (同) (三) (三) (三) (○) (○)

The S-duality conjecture - simple singularities

Theorem (S-duality for simple singularities)

For type A and type D, and, conjecturally for type E, the partition function $Z_{\mathbb{C}^2/G}(q)$ is, up to a suitable fractional power of q, the q-expansion of a meromorphic modular form of weight $-\frac{1}{2}$ for some congruence subgroup of $SL_2(\mathbb{Z})$.

Corollary (S-duality for surfaces with simple singularities) Let X be a quasiprojective surface with simple singularities of type A and D, or, assuming the conjecture, arbitrary type. Then the partition function

$$Z_X(q) = \sum_{m=0}^{\infty} \chi(\operatorname{Hilb}^m(X)) q^m$$

is, up to a suitable fractional power of q, the q-expansion of a meromorphic modular form of weight $-\frac{\chi(X)}{2}$ for some congruence subgroup of $SL_2(\mathbb{Z})$.

Future plans

- More general (quotient) singularities
- Lift to motivic integrals
- Moduli of higher rank sheaves on singularities
- Representation theory behind $H^*(\operatorname{Hilb}(\mathbb{C}^2/G))$ (coset vertex algebras)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

<u>۲</u>

Thank you for your attention! Questions?