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Hilbert scheme of points

Let X be a quasiprojective variety over C.

Definition (Theorem)

For every n ∈ N there is a Hilbert scheme Hilbn(X ), which
parametrizes 0 dimensional subschemes (ideal sheaves) of colength
n on X .

Remark

1. Hilbn(X ) represents a moduli functor.

2. Every Z ∈ Hilbn(X ) decomposes as Z = ∐Zj , where the
supports Pj = SuppZj are mutually disjoint.

3. colength(Z ,Pj) = length(OZ ,Pj
).

4. Hilbert-Chow morphism

Π ∶ Hilbn
(X ) → SnX , I ↦∑

j

colength(Z ,Pj)Pj



Hilbert scheme of points

Relative version: For Y ⊂ X a (locally) closed subvariety:
Hilbn(X ,Y ) ⊂ Hilbn(X ) is the Hilbert scheme of points
(set-theoretically) supported on Y .

Question: From topological/analytical properties of X what can we
infere about the topology of Hilbn(X )?

Usually: better to work with the collection of the Hilbert schemes
for all n together.



Curves

C curve over C with singularities pi ↝ Csm = C ∖∐i pi smooth part

ZC =
∞
∑
n=0

χ(Hilbn
(C))qn

=
∞
∑
n=0

∑
n0+⋅⋅⋅=n

χ(Hilbn0(Csm))qn0 ∏
i

χ(Hilbni (C ,pi))q
ni

= ZCsm(q)∏
i

(
∞
∑
n=0

χ(Hilbn
(C ,pi))q

n
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Z
(C ,pi )

(q)

Theorem (Macdonald)

ZCsm(q) =
1

(1 − q)χ(Csm)



Plane curve singularities

(C ,0) a plane curve singularity with link L(C ,0) ⊆ S3 and
Milnor-number µ

Theorem (Maulik, conjecture of Oblomkov-Shende)

Z(C ,0)(q
2
) =

1

q2
[(

q

a
)
µ

P(L(C ,0))] ∣
a=0

,

where P(L) ∈ Z[a±, (q − q−1)±] is the HOMFLY polynomial of the
link L.

Corollary

The topology of the link (i.e. its embedding type) determines
Z(C ,p)(q)



Smooth surfaces

Theorem (Fogarty)

If X is a smooth surface over C then:

1. Hilbn(X ) is smooth of dimension 2n

2. Π ∶ Hilbn(X ) → SnX is a resolution of singularities

Theorem (Göttsche)

∞
∑
n=0

Pt(Hilbn
(X ))qn

=
∞
∏
n=1

(1 + t2n−1qn)b1(X)(1 + t2n+1qn)b3(X)

(1 + t2n−2qn)b0(X)(1 + t2nqn)b2(X)(1 + t2n+2qn)b4(X)

Corollary

ZX (q) =
∞
∏
i=1

1

(1 − qn)χ(S)



Affine plane

Theorem (Barth, Nakajima)

Hilbn(C2) is the quiver variety corresponding to the Jordan quiver

with dimension vectors v = (n), w = (1).
That is

Hilbn
(C2

) = {(B1,B2, i , j) ∣ [B1,B2] + ij = 0}//Gln(C) ,

where B1,B2 ∈ End(Cn), i ∈ Hom(C,Cn), j ∈ Hom(Cn,C),
g ∈ Gln(C) acts as

g ⋅ (B1,B2, i , j) = (gB1g
−1,gB2g

−1,gi , jg−1
) ,

and // is the GIT quotient for some stability condition.



Affine plane

ZC2(q) =
∞
∏
i=1

1

(1 − qn)
= ∑

n≥0

p(n)qn .

This is the character formula for F , the Fock space representation
of the Heisenberg algebra.
Recall:

▸ F = ⊕λ∈P Cλ,

▸ p(λ) = ∑1 block added λ
′,

▸ q(λ) = ∑1 block removed λ
′,

▸ [p,q] = Id .

Theorem (Nakajima, Grojnowski)

H∗
(Hilb(C2

)) =
∞
⊕
n=0

H∗
(Hilbn

(C2
)) ≅ F .



Coarse Hilbert scheme

G ⊂ Sl2(C) finite subgroup, acting on C2.
C2/G qoutient variety with an orbifold structure.

Definition
Coarse (invariant) Hilbert scheme:

Hilb(C2
/G) = {Z ◁C[x , y]G ∣Z is of finite colength} .

As before, this decomposes as

Hilb(C2
/G) = ∐

m∈N
Hilbm

(C2
/G) .



Orbifold Hilbert schemes

Definition
Orbifold (equivariant) Hilbert scheme:

Hilb([C2
/G ]) = {I ∈ Hilb(C2

) ∣ I is G -invariant} .

This stratifies as

Hilb([C2
/G ]) = ⋃

ρ∈Rep(G)
Hilbρ([C2

/G ]) ,

where

Hilbρ([C2
/G ]) = {I ∈ Hilb(C2

) ∣ H0
(OI ) = H0

(OC2/I ) ≃G ρ} .



Generating series

Let ρ0, . . . ρn be the irreducible representations of G .

Definition

(a) Coarse generating series (or coarse partition function):

ZC2/G(q) =
∞
∑
m=0

χ (Hilbm
(C2

/G))qm .

(b) Orbifold generating series (or Orbifold partition function):

Z[C2/G](q0, . . . ,qn) =

=
∞
∑

m0,...,mn=0

χ (Hilbm0ρ0+...+mnρn([C2
/G ]))qm0

0 ⋅ . . . ⋅ qmn
n .



Maps between the orbifold and coarse Hilbert schemes

i ∶ C[x , y]G ⊂ C[x , y] inclusion.

Definition

(a) Pushforward (scheme-theoretic):

p∗ ∶ Hilb([C2
/G ]) → Hilb(C2

/G), J ↦ JG = J ∩C[x , y]G .

(b) Pullback (only set-theoretic):

i∗ ∶ Hilb(C2
/G)(C) → Hilb([C2

/G ])(C), I ↦ i∗I = C[x , y].I .

(C[x , y].I )G = I for any I ◁C[x , y]G Ô⇒ p∗ ○ i∗ is the identity.



McKay correspondence

Finite subgroups of Sl2(C) ∶ An(n ≥ 1), Dn(n ≥ 4), E6,E7,E8.
To the quotient C2/G we can associate its resolution graph:

Denote the corresponding simple (finite dimensional) Lie algebra
by g, the normalized Killing form on it by ( ∣ ).
The (irred.) representations of the finite group are described by
another graph (McKay quiver, ρdef ⊗ ρi = ⊕j aijρj):



Affine Lie algebras

ĝ = g⊗C[z , z−1] ⊕Cc ⊕Cd
▸ [X ⊗ zm,Y ⊗ zn] = [X ,Y ] ⊗ zm+n +mδm+n,0(X ∣Y )c

▸ c is central

▸ d = −z d
dz

Example

û(1) = heis the Heisenberg algebra.

Affine simple roots: ∆̂ = {α0, α1, . . . , αn} = {α0} ∪∆.
There is a natural scalar product on these ↝ identification with the
dual space.
Fundamental weights: {ω0, ω1, . . . , ωn}.
Level l representation: when c acts as multiplication by l .



Affine Lie algebra action on the homologies

Let V0 be the level-1 representation with highest weight ω0 (basic
representation).
Let F be the standard Fock space representation of heis.
Then V = V0 ⊗F is a representation of ĝ⊕c heis (extended basic
representation), where ⊕c = ⊕+ centers identified.

Theorem (Nakajima)

H∗(Hilb([C2/G ]) carries an action of ĝ⊕c heis, under which it is
graded isomorphic to V .



Decomposition of V
Q = Z∆ root lattice, P weight lattice.

Theorem (Frenkel-Kac)

V ≅ F
n+1

⊗C[Q] .

Corollary (Weyl-Kac)

charV (q0, . . . ,qn) = ∑
λ occours in V

mult(λ)eλ =

∑
∞
m=(m1,...,mn)∈Zn q

m1
1 . . .qmn

n (q1/2)m
⊺⋅C ⋅m

∏
∞
m=1(1 − qm)n+1

,

where eαi = qi , e−δ = e∑i aiαi = q, C is the finite Cartan matrix.

Since there are no odd cohomologies, we have

Z[C2/G](q0, . . . ,qn) = charV (q0, . . . ,qn) .



Affine crystals

Recall: the partitions (Young diagrams) give a basis for the
Fock-space.

Definition (Theorem)

1. When g is of type An or Dn, then V can be constructed on a
vector space, which is spanned by a crystal basis.

2. The elements of the crystal basis are in one-to-one
correspondence with a set Z of combinatorial objects, called
Young walls.



Cell decomposition for orbifold Hilbert schemes

Theorem (Gy-N-Sz)

Let [C2/G ] be a simple singularity orbifold, where G is of type An

for n ≥ 1 or Dn for n ≥ 4. Then there is an explicit decomposition
of Hilb([C2/G ]) into affine cells indexed by the set of Young walls
Z of the appropriate type.

Corollary

Z[C2/G](q0, . . . ,qn) = ∑
λ∈Z

n

∏
j=0

q
wj(λ)
j

Remark

▸ For An this was done already by Fujii-Minabe.

▸ This strengthens Nakajima’s result.

▸ The RHS of the prevoius character formula enumerates the
Young walls of the appropriate type.



Cell decomposition for coarse Hilbert schemes

Theorem (Gy-N-Sz)

Let C2/G be a simple singularity orbifold, where G is of type An

for n ≥ 1 or Dn for n ≥ 4. Then there is specific, combinatorially
defined subset Z0 ⊂ Z, and an explicit decomposition of
Hilb(C2/G) into affine cells indexed by the set of Young walls Z0

of the appropriate type. Moreover, there is a combinatorially
defined mapping Z → Z0, such that the following diagram is
commutative

Hilb([C2/G ]) Z

Hilb(C2/G) Z0

p∗ p ,

where the horizontal maps associate to an ideal the Young wall of
its cell.



The orbifold An case

G = cyclic subgroup of Sl2(C) of order n + 1.
Generated by

σ = (
ω 0
0 ω−1) ,

where ω is a (n + 1)-st root of unity.
All irreducible representations of G are one dimensional.
They are given by ρj ∶σ ↦ ωj , for j ∈ {0, . . . ,n}.
σ commutes with the diagonal two torus T = (C2)

Ô⇒ T ↷ [C2/G ], T ↷ C2/G
Ô⇒ T ↷ Hilb([C2/G ]), T ↷ Hilb(C2/G).



(C∗)2 fixpoints
The Young wall pattern of type An:

0 1 n−1 n

n 0 n−2 n−1

0 1

n 0

1 2

0 1

⋮ ⋮

. . . . . .

⋮

Z = Young diagrams with this coloring.
For λ ∈ Z , let wj(λ) denote the number of blocks in λ labeled j .
Multi-weight: w(λ) = (w0(λ), . . . ,wn(λ)).

Proposition

▸ Affine cells of Hilb([C2/G ]) ↔ Hilb([C2/G ])T ↔Z.

▸ H0(OI ) = ⊕i ρ
⊕mi
i at an ideal I which is a fixpoint described

by λ if and only if (m0, . . . ,mn) = w(λ).



Idea of proof

▸ C[x , y]T = monomials.

▸ Hilb([C2/G ])T = Hilb(C2)T = monomial ideals.

▸ Choose a generic 1D-subtorus T0 ⊂ T which has positive
weight on x and y .

▸ Bialynizcki-Birula → all limits of T0-orbits at t = 0 exist
(eventhough Hilb([C2/G ]) is not compact).

▸ Take the BB decomposition of Hilb([C2/G ]).

Corollary

Cells of Hilb(C2/G) ↔ Hilb(C2/G)T ↔ monomial ideals in
C[x , y]G = C[xn+1, xy , yn+1] ↔ 0-generated Young walls (where all
the generators are of color 0) =∶ Z0.



The An-abacus
The abacus of type An is:

⋮ ⋮ ⋮ ⋮

−n −n + 1 . . . −1 0
1 2 . . . n n + 1
⋮ ⋮ ⋮ ⋮

To a diagram λ ∈ Z associate the infinite series of numbers:
{λ1, λ2 − 1, λ3 − 2, . . .}
We put a bead on each of these numbers.

Example (n=2)

0

0

0

0

1

1

1

2

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Cores

Border strip: a skew Young diagram which does not contain 2 × 2
blocks and which contains exactly one j-labelled block for all labels
j .

Example

0

0

0

0

1

1

1

2

2

2

2

Observation: Removal of a border strip corresponds to shifting a
bead up in the abacus representation.
Aim: we remove the border strips until possible ↝ core.



Example

0

0

0

0

1

1

1

2

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Example

0

0

01

1

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Example

0

0

01

1

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Example

0 01 2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Example

0 01 2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Example

0

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Structure of the orbifold generating series

The relative positions to the highest possible places of the beads
on a single ruler are described by a partition: µ1 ≥ ⋅ ⋅ ⋅ ≥ µr ≥ 0.
There are n + 1 rulers Ô⇒ for each core possible extensions by
n + 1 partitions (quotients).
A border strip has weight q = q0 . . .qn.

Corollary

▸ Z ←→ C ×Pn+1 where C is the set of cores (diagrams without
border strips).

▸

Z(q0, . . . ,qn) = Zquotients(q)Zcores(q0, . . . ,qn) =

= (
∞
∏
m=1

(1 − qm)
−1

)

n+1 ∞
∑

m=(m1,...,mn)∈Zn

qm1
1 . . .qmn

n (q1/2
)
m⊺⋅C ⋅m ,

where C is the Cartan matrix of type A.



Combinatorial description of the pushforward map

The pushforward map was induced by I ↦ IG = I ∩C[x , y]G .
Thus, we have to extend the diagram of I to get the smallest
0-generated diagram which covers it.

Example

0

0

0

0

1

1

1

2

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Combinatorial description of the pushforward map

The pushforward map was induced by I ↦ IG = I ∩C[x , y]G .
Thus, we have to extend the diagram of I to get the smallest
0-generated diagram which covers it.

Example

0

0

0

0

1

1

1

2

2

2

2

0

0

0

0

0

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Combinatorial description of the pushforward map

The pushforward map was induced by I ↦ IG = I ∩C[x , y]G .
Thus, we have to extend the diagram of I to get the smallest
0-generated diagram which covers it.

Example

0

0

0

0

1

1

1

1

1

12

2

2

2

2

2

0

0

0

0

0

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



Combinatorial description of the pushforward map

The pushforward map was induced by I ↦ IG = I ∩C[x , y]G .
Thus, we have to extend the diagram of I to get the smallest
0-generated diagram which covers it.

Example

0

0

0

0

1

1

1

1

1

12

2

2

2

2

2

⋮ ⋮ ⋮

−8 −7 −6

−5 −4 −3

−2 −1 0

1 2 3

4 5 6
⋮ ⋮ ⋮



The coarse case

So p∗ combinatorially corresponds to pushing all the bead to the
right as much as possible. This is the map p.

Corollary

Z0 ←→ those abacus configurations where no bead can be moved
to the right.

Using this it is possible to prove

Proposition

Let ξ = e
2πi
n+2 . Then under the substitution qi = ξ i ∈ {1, . . . ,n},

q0 = ξ
−nq the terms in Z[C2/G](q0, . . . ,qn) corresponding to the

preimage of a 0-generated diagram λ0 add up to the term
corresponding to λ0 in ZC2/G(q). That is

∑
µ∈p−1(λ0)

qwt(µ)
∣
q1=⋅⋅⋅=qn=ξ,q0=ξ−nq

= qwt0(λ0) .



The coarse generating series

Corollary

ZC2/G∆
(q) =

= (
∞
∏
m=1

(1 − qm)
−1

)

n+1

∑
m=(m1,...,mn)∈Zn

ξm1+m2+⋅⋅⋅+mn(q1/2
)
m⊺⋅C∆⋅m,

where ξ = e
2πi
n+2 and C is the Cartan matrix of type A.



The general statement

Theorem
G ⊂ Sl2(C) subgroup of type An, Dn (conjecture for En), C is the
finite type Cartan matrix, h the (dual) Coxeter of the root system.

▸

Z[C2/G](q0, . . . ,qn) =
∑m=(m1,...,mn)∈Zn qm1

1 ⋅ ⋅ ⋅ ⋅ ⋅ qmn
n (q1/2)m

⊺⋅C∆⋅m

∏
∞
m=1(1 − qm)n+1

,

where q = ∏n
i=0 q

di
i with di = dimρi , and each term

corresponds to an affine cell in Hilb([C2/G ]);

▸

ZC2/G∆
(q) =

∑m=(m1,...,mn)∈Zr ζm1+m2+⋅⋅⋅+mn(q1/2)m
⊺⋅C∆⋅m

∏
∞
m=1(1 − qm)n+1

,

where ζ = e
2πi
1+h , and each term corresponds to an affine cell in

Hilb(C2/G).



The Dn case

▸ Generated by

σ = (
ε 0
0 ε−1) , τ = (

0 1
−1 0

) ,

where ε a fixed primitive (2n − 4)-th root of unity.

▸ Bad news: there is no compatible (C∗)2 action.

▸ Good news: there is a compatible C∗ action.

▸ Possible to show: the fixed points Hilb([C2/G ])C
∗

are affine
spaces parametrized by the Young walls of type Dn.

▸ There is an abacus description of these.

▸ The substitution works.



Young wall pattern of type Dn

2

n−2

n−2

2

2

⋮

⋮

2

n−2

n−2

2

2

⋮

⋮

2

n−2

n−2

2

2

⋮

⋮

2

n−2

n−2

2

2

⋮

⋮

0
1

n−1
n

0
1

0
1

n−1
n

0
1

1
0

n
n−1

1
0

1
0

n
n−1

1
0



Moduli spaces of torsion free sheaves

Points of Hilbn(S) ←→ ideal sheaves of colength n on S ←→
torsion free sheaves of rank 1, c1 = 0 and c2 = n.
There are analogous moduli spaces for higher rank (H-semistable)
torsion-free sheaves: MH

S (ch).

Conjecture (S-duality (Vafa, Witten))

For S a smooth projective algebraic surface the generating series

ZH
S (τ) = ∑

ch

χ(MH
S (ch))qf (ch)

with q = e2πiτ should be a meromorphic modular form for some
congruence subgroup of SL2(Z).



The S-duality conjecture - simple singularities

Theorem (S-duality for simple singularities)

For type A and type D, and, conjecturally for type E, the partition
function ZC2/G(q) is, up to a suitable fractional power of q, the

q-expansion of a meromorphic modular form of weight −1
2 for some

congruence subgroup of SL2(Z).

Corollary (S-duality for surfaces with simple singularities)

Let X be a quasiprojective surface with simple singularities of type
A and D, or, assuming the conjecture, arbitrary type. Then the
partition function

ZX (q) =
∞
∑
m=0

χ (Hilbm
(X ))qm

is, up to a suitable fractional power of q, the q-expansion of a

meromorphic modular form of weight −χ(X)
2 for some congruence

subgroup of SL2(Z).



Future plans

▸ More general (quotient) singularities

▸ Lift to motivic integrals

▸ Moduli of higher rank sheaves on singularities

▸ Representation theory behind H∗(Hilb(C2/G)) (coset vertex
algebras)

▸ . . .



Thank you for your attention!

Questions?


