Fontaine-Mazur conjecture and p-adic Galois representations

Exercises

13th June 2014

In this series of exercises we construct the Witt rings of perfect rings of characteristic p . Let A be a commutative ring with 1 in which $p = 1 + \cdots + 1$ \overline{p} \in A is not a zero divisor and

the natural map $A \to \lim_{\Delta} A/p^n A$ is an isomorphism (ie. A is *p-adically complete*). Further suppose that $R := A/pA$ is a *perfect ring of characteristic p*, that is the *p*-power Frobenius is bijective: for all $x \in R$ there exists uniquely a $y := x^{p^{-1}} \in R$ with $x = y^p$. These rings A are called *strict p-rings*. For example $A = \mathbb{Z}_p$ is a strict p-ring.

- 1. Show that on fields k of characteristic p the Frobenius is always injective and it is surjective if and only if none of the irreducible polynomials over k have a multiple root.
- 2. Show that a ring R of characteristic p (ie. commutative and $1 + \cdots + 1$) \overline{p} $= 0$) is reduced

(ie. contains no nilpotent elements) if the Frobenius is injective.

- 3. Let A be a strict p-ring with $R = A/pA$ perfect of characteristic p. For any $x \in R$ denote by \hat{x} an arbitrary lift of x to A (ie. $x = \hat{x} + pA$). We choose once and for all such a lift for each $x \in R$. Show that the limit $[x] := \lim_{n \to \infty} (\widehat{x}^{p^{-n}})^{p^n}$ exists in A in the p-adic topology. Moreover, verify that $[xy] = [x][y]$. The element $[x] \in A$ is called the multiplicative (or Teichmüller) representative of x .
- 4. Show that in a strict p-ring A any element $x \in A$ can be uniquely written in the form

$$
x = \sum_{i=0}^{\infty} p^i [x_i]
$$

where $[x_i] \in A$ are multiplicative representatives of elements $x_i \in R$. Moreover, any sum like that converges in the p -adic topology.

Let R be a perfect ring of characteristic p. Our goal is to construct a strict p-ring $W(R)$ such that $R \cong W(R)/pW(R)$. Further, we would like to do this functorially in R. Such a $W(R)$ will be unique up to a unique isomorphism and will be called the Witt ring of R. The elements of $W(R)$ will have the form $\sum_{i=0}^{\infty} p^{i}[x_i]$ with $x_i \in R$. Here $[x_i]$ denotes a formal multiplicative representative of x_i in $W(R)$. In order to define the addition and multiplication

on these formal power series we first need to construct the Witt ring of a free perfect ring of characteristic p on countably many generators. Let $X_0, X_1, \ldots, Y_0, Y_1, \ldots$ be formal variables. Moreover, let $X_i^{p^{-n}}$ $i^{p^{-n}}$ and $Y_i^{p^{-n}}$ denote a formal p^n th root of these variables. Further let

$$
\mathbb{Z}_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \ge 0] := \bigcup_n \mathbb{Z}_p[X_i^{p^{-n}}, Y_i^{p^{-n}} \mid i \ge 0];
$$

$$
S := \varprojlim_n \mathbb{Z}_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \ge 0]/(p^n) .
$$

5. Show that S is a strict p-ring. Therefore there exist polynomials $S_i, P_i \in S/pS =$ $\mathbb{F}_p[X_i^{p^{-\infty}}]$ $i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0$ for which

$$
\left(\sum_{i=0}^{\infty} p^i X_i\right) + \left(\sum_{i=0}^{\infty} p^i Y_i\right) = \sum_{i=0}^{\infty} p^i [S_i]
$$

$$
\left(\sum_{i=0}^{\infty} p^i X_i\right) \left(\sum_{i=0}^{\infty} p^i Y_i\right) = \sum_{i=0}^{\infty} p^i [P_i].
$$

- 6. Determine the polynomials $S_0, S_1, P_0, P_1 \in \mathbb{F}_p[X_i^{p^{-\infty}}]$ $i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0].$
- 7. Let R be a perfect ring of characteristic p and put $W(R) = \{r = (r_0, r_1, \dots) \mid r_i \in$ $R, i \geq 0$ = $R^{\mathbb{N}}$ as a set. Consider the following operations on $W(R)$: $(r + s)_n$:= $S_n(r_0, r_1, \ldots, s_0, s_1, \ldots)$ and $(rs)_n := P_n(r_0, r_1, \ldots, s_0, s_1, \ldots)$. Show that this equips the set $W(R)$ with a structure of a strict p-ring.
- 8. Prove the following universal property of $W(R)$: if A is any strict p-ring and $\varphi: R \to$ A/pA is a ring homomorphism then there exists a unique homomorphism $\tilde{\varphi} : W(R) \to A$ lifting φ , ie. φ equals $\tilde{\varphi}$ modulo p). In particular, W is a functor from the category of perfect rings of characteristic p to the category of strict p-rings. Remark: $Frob_p : R \to R$ can also be lifted to $W(R)$. We call this Frobenius-lift.
- 9. Show that the functors $R \mapsto W(R)$ and $A \mapsto A/pA$ are quasi-inverse equivalences of categories between the category of strict p -rings and the category of perfect rings of characteristic p.
- 10. Show that the field $\mathbb{C}_p := \widehat{\overline{\mathbb{Q}_p}}$ is algebraically closed. (Here $\overline{\cdot}$ stands for the algebraic closure and $\hat{\cdot}$ stands for the completion with respect to the p-adic absolute value.)
- 11. For a finite extension K/\mathbb{Q}_p (inside $\overline{\mathbb{Q}_p}$) denote by $G_K = \text{Gal}(\overline{\mathbb{Q}_p}/K)$ its absolute Galois group. Since the action of G_K is continuous (isometric) on $\overline{\mathbb{Q}_p}$ it extends to the completion \mathbb{C}_p . Show that $\mathbb{C}_p^{G_K} = K$, ie. there are no transcendental invariants.
- 12. (Hilbert 90 for GL_n) Show that for any finite Galois extension L/K of fields we have

$$
H^1(\text{Gal}(L/K), \text{GL}_n(L)) = \{1\}.
$$

Note that for $n > 1$ this is just a pointed set, not a group. Recall that the nonabelian group cohomology is defined as follows: if the group G acts on the group A via automorphisms then $H^1(G, A)$ is the set of equivalence classes of 1-cocycles: a 1-cocycle is a

map $\varphi: G \to A$ with the property that $\varphi(qh) = \varphi(q) \cdot (q\varphi(h))$. Moreover, φ is equivalent to φ' if there exists an $a \in A$ such that for all $g \in G$ we have $a\varphi'(g) = \varphi(g) \cdot (ga)$. The distinguished element of the set $H^1(G, A)$ is the equivalence class of the constant 1 map.

13. (Thm. Ax–Sen–Tate) Prove that for any closed subgroup $H \leq G_K$ we have $\mathbb{C}_p^H = \widehat{L}$ where $L = \overline{\mathbb{Q}_p}^H$.

The following exercises are meant to be done after the course.

- 14. Let Λ be a finitely generated \mathbb{Z}_p -module equipped with a continuous representation by $G_K = \text{Gal}(K/K)$ for the fraction field K of a complete discrete valuation ring. Let $\rho: G_K \to \text{Aut}_{\mathbb{Z}_p}(\Lambda)$ be the associated homomorphism. Prove that Ker ρ is a closed normal subgroup in G_K , and let K_∞ be the corresponding fixed field; we call it the splitting field of ρ . In case ρ is the Tate module representation of an elliptic curve E over F with $char(K) \neq p$, prove that the splitting field of ρ is the field $K(E[p^{\infty}])$ generated by the coordinates of the p-power torsion points.
- 15. Let E be an elliptic curve over K with split multiplicative reduction, and consider the representation space $V_p(E) = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T_p(E) \in \text{Rep}_{\mathbb{Q}_p}(G_K)$. The theory of Tate curves provides an exact sequence

$$
0 \to \mathbb{Q}_p(1) \to V_p(E) \to \mathbb{Q}_p \to 0
$$

that is non-split in $\text{Rep}_{\mathbb{Q}_p}(G_{K'})$ for all finite extensions K'/K inside of \overline{K} . Show that the exact sequence

$$
0 \to \overline{K}(1) \to \overline{K} \otimes_{\mathbb{Q}_p} V_p(E) \to \overline{K} \to 0
$$

is not split in the category $\text{Rep}_{\overline{K}}(G_K)$ of semilinear representations of G_K on \overline{K} -vector spaces either. However, the exact sequence

$$
0 \to \mathbb{C}_p(1) \to \mathbb{C}_p \otimes_{\mathbb{Q}_p} V_p(E) \to \mathbb{C}_p \to 0
$$

splits in $\mathrm{Rep}_{\mathbb{C}_p}(G_K)$.

16. Let $\eta: G_K \to \mathbb{Z}_p^{\times}$ be a continuous character. Identify $H^1_{cont}(G_K, \mathbb{C}_p(\eta))$ with the set of isomorphism classes of extensions

$$
0 \to \mathbb{C}_p(\eta) \to W \to \mathbb{C}_p \to 0
$$

in $\mathrm{Rep}_{\mathbb{C}_p}(G_K)$ as follows: using the matrix description

$$
\begin{pmatrix} \eta & * \\ 0 & 1 \end{pmatrix}
$$

of such a W, the homomorphism property for the G_K -action on W says that the upper right entry function is a 1-cocycle on G_K with values in $\mathbb{C}_p(\eta)$, and changing the choice of \mathbb{C}_p -linear splitting changes this function by a 1-coboundary.

- 17. Let R be a discrete valuation ring with maximal ideal \mathfrak{m} and residue field k, and let $A = \text{Frac}(R)$. There is a natural structure of a filtered ring on A via $A^i = \mathfrak{m}^i$ for $i \in \mathbb{Z}$. In this case the associated graded ring $gr^{\bullet}(A)$ is a k-algebra that is non-canonically isomorphic to a Laurent polynomial ring $k[t, 1/t]$ upon choosing a k-basis of $\mathfrak{m}/\mathfrak{m}^2$. Show that canonically $\mathrm{gr}^{\bullet}(A) \cong \mathrm{gr}^{\bullet}(\hat{A})$, where \hat{A} denotes the fraction field of the completion R of R .
- 18. Let the ring R be $R := \varprojlim_{x \mapsto x^p} \mathcal{O}_{\mathbb{C}_p}/(p)$. Show that R has no zero divisiors and Frac (R) is an algebraically closed field of characteristic p.
- 19. Show that B_{dR}^+ is not (\mathbb{Q}_p, G_K) -regular.
- 20. Show that a 1-dimensional p-adic Galois-representation is deRham if and only if it is Hodge-Tate.
- 21. Show that a p-adic Galois representation V is deRham (resp. Hodge-Tate) if and only if all its Tate twists $V(r)$ are deRham (resp. Hodge-Tate).
- 22. Calculate explicitely $D_{cris}(\mathbb{Q}_p(r)).$
- 23. Calculate explicitely $D_{st}(V_p(E))$ where E is an elliptic curve over K with split multiplicative reduction (you may assume it is a Tate curve).