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Sklyanin’s formula provides a set of canonical spectral coordinates on the standard Calogero-Moser space
associated with the quiver consisting of a vertex and a loop. We generalize this result to Calogero-Moser
spaces attached to cyclic quivers by constructing rational functions that relate spectral coordinates to conjugate
variables. These canonical coordinates turn out to be well-defined on the corresponding simple singularity of
type A, and the rational functions we construct define interpolating polynomials between them.
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1. Introduction

The n-th Calogero-Moser space Cn can be viewed as the completed phase space of the n-particle
rational Calogero-Moser (CM) system [1,11,19]. This system describes n interacting particles with
positions q = (q1, . . . ,qn) and momenta p = (p1, . . . , pn) evolving in time according to Hamilton’s
equations

dq j

dt
=

∂H
∂ p j

,
d p j

dt
=− ∂H

∂q j
, j = 1, . . . ,n (1.1)

given by the Hamiltonian

H(p,q) =
n

∑
j=1

p2
j

2
+ ∑

1≤ j<k≤n

γ

(q j−qk)2 . (1.2)

Here γ is a parameter that controls the strength of particle interaction, which itself is defined via a
pair-potential that is inversely proportional to the square of the difference of particle-positions. This
system has many conserved quantities, i.e. functions F such that {H,F} = 0, that can be obtained
as spectral invariants of a matrix-valued function of q and p, that is the Lax matrix of the system.
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Moreover, the eigenvalues of the Lax matrix of the CM system form a complete set of Poisson
commuting first integrals, hence the CM system is Liouville integrable [11]. This encourages the
investigation of the spectrum of the Lax matrix. These eigenvalues provide partial parametrisation
of the CM space on the dense open subset where the Lax matrix is diagonalisable. A natural ques-
tion is to find a set of conjugate variables in order to obtain a full parametrisation compatible with
the symplectic structure ∑

n
j=1 d p j∧dq j. Sklyanin formulated a conjectural expression for conjugate

variables in [16]. Utilizing the bi-Hamiltonian structure of the classical CM system, this conjecture
was proved in [5]. Another proof of Sklyanin’s formula was given in [8] using Hamiltonian reduc-
tion [9].

Canonical spectral coordinates are central to the algebro-geometric approach to integrable sys-
tems [15]. In general, when the Lax matrix of a system depends on a spectral parameter z, canon-
ical coordinates are given by the location of the poles of a (suitably normalized) eigenvector of
the Lax matrix L(z). Equivalently, the coordinates are given by the locations on the spectral curve
det(λ1− L(z)) of the points corresponding to the zeros of a specific polynomial. However, this
method cannot be applied directly to the rational CM-system, because all poles of the eigenvector
are located above z = ∞, hence the z coordinates of these poles do not provide conjugate variables
to the eigenvalues of the specialized (spectral parameter independent) Lax matrix L(∞). A formula
conjectured by Sklyanin [16] resolves exactly this problem. Instead of the coordinate z, some other
function associated with the dynamical variables should be used to express the conjugate variables.

The classical CM space Cn is also a particular example of a quiver variety [7, 12]. Namely, it
is associated with the quiver consisting of only one vertex with a loop attached to it. More general
Calogero-Moser spaces associated with other quivers can be constructed in a similar manner. In this
work, we investigate the CM space associated with the cyclic quiver as introduced in [3]. For short,
we will call it the equivariant Calogero-Moser space since it can be thought of as the completed
phase space of the equivariant n-particle rational Calogero-Moser system under the action of the
cyclic group of order m. We will denote it by C m

n . Our main observation is that, similarly to the
non-equivariant case Cn = C 1

n , an explicit formula for the conjugate variables on C m
n can be given.

One can go even further by allowing the particles to have spin, i.e. internal degrees of freedom.
The corresponding space will be denoted by sC m

n , where we suppressed the dimension of the space
of internal states. We extend our results to this case as well. Although the resulting formulas look
the same as in the spinless case, the proofs differ at several points.

It was shown in [3] that on the dense open subset where the specialized Lax matrix is diago-
nalisable, if (λ1, . . . ,λn) are its the eigenvalues, then there is a certain set of variables (φ1, . . . ,φn)

which are conjugate to the eigenvalues. Our first main result is the following

Theorem 1.1. On a dense open subset of the Calogero-Moser space C m
n (resp., sC m

n ) there is a
certain rational function r(z) ∈ C(z) such that on a dense open subset the relationship

φi = r(λi) i = 1, . . . ,n (1.3)

between the sets of conjugate variables (φ1, . . . ,φn) and (λ1, . . . ,λn) holds.

Theorem 1.1 shows that although the specialized Lax matrix of the equivariant CM system does
not contain a spectral parameter, the conjugate variable pairs (λi,φi) are still lying on an “interpola-
tion curve” defined by the equation y = r(z). More precisely, the pair (λi,φi) is a well-defined point
on the singular surface of type Am−1, and the interpolation curve between the points {(λi,φi)} is a
rational curve on this singular surface.
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The datum which represents a point on C m
n or on sC m

n contains a framing, which consists of two
additional vectors v and w. In the spin case the variables (λ1, . . . ,λn) and (φ1, . . . ,φn) together with
the coordinates of the vectors v and w form a complete set of canonical coordinates, whereas in the
spinless case the coordinates of v and w can always be gauged away and (λ1, . . . ,λn,φ1, . . . ,φn) are
enough for a complete local parametrisation.

It turns out that on Cn (resp., sC m
n ) the set (φ1, . . . ,φn) is not the only natural set of variables

which is conjugate to (λ1, . . . ,λn) [8]. The function r(z) appearing in Theorem 1.1 (including its
special case for m = 1) does not depend on the framing part of the datum whereas the conjectured
formula in [16], which gives another set of conjugate variables on Cn in the m = 1 case, does depend
on the framing. Our second result is that an analogue of Sklyanin’s formula from [16] is also valid
in the equivariant case, and there is a second natural set of conjugate variables to (λ1, . . . ,λn) which
depends on the framing as well.

Theorem 1.2. On a dense open subset of the Calogero-Moser space C m
n (resp., sC m

n ) there is a
certain rational function s(z) ∈C(z), depending also on the framing part of the datum, such that on
a dense open subset the variables θ1, . . . ,θn, defined as

θi = s(λi), i = 1, . . . ,n (1.4)

are conjugate to λ1, . . . ,λn, respectively.

It is known that the non-equivariant CM space Cn is a deformation of the Hilbert scheme
Hilbn(C2) of n points on C2. The framing vectors play an essential role in the stability condition of
the GIT construction of Hilbn(C2) as a quiver variety [13]. Hence, it seems useful to keep track of
the framing vectors (or their steadiness) during a degeneration of Cn into Hilbn(C2). The advantage
of Theorem 1.2 is that as opposed to r(z) the functions s(z) can measure such a steadiness.

Theorems 1.1 and 1.2 show that there are at least two natural sets of variables conjugate to the
spectral variables (λ1, . . . ,λn). Correspondingly, there are two natural interpolation curves on the
singular surface of type Am−1.

The structure of the paper is as follows. In Section 2 we recall the recipe of separation of vari-
ables and its relation to the spectral curve with a special emphasis on the rational CM system. In
Section 3 we summarize the construction and the symplectic structure on the CM space associated
with the cyclic quiver. In Section 4 we prove Theorems 1.1 and 1.2 for the spinless case. In Section
5, after introducing the equivariant CM space with spin, we give the proofs of Theorems 1.1 and
1.2 for this case. In Section 6 we construct the interpolation curves on the singular surface of type
Am−1.

2. Separation of variables and the spectral curve of the rational Calogero-Moser system

We briefly review the method of separation of variables (SoV) following [15]. Consider a Liouville
integrable system having n degrees of freedom. This means a 2n-dimensional symplectic manifold
(P,ω) with n independent smooth functions H1, . . . ,Hn on it that commute with respect to the Pois-
son bracket {,} induced by the symplectic form ω , i.e. {H j,Hk}= ω(XH j ,XHk) = 0, j,k = 1, . . . ,n.
A system of canonical coordinates (p j,q j), j = 1, . . . ,n, i.e. local coordinates on the symplectic
manifold satisfying

{p j, pk}= {q j,qk}= 0, {p j,qk}= δ j,k j,k = 1, . . . ,n (2.1)
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is called separated if there exist n relations of the form

Φ j(q j, p j,H1, . . . ,Hn) = 0, j = 1, . . . ,n. (2.2)

Such a system of variables induces an explicit decomposition of the Liouville tori into one-
dimensional tori and makes several calculations about the system straightforward [15].

Suppose that the system under consideration has a Lax representation. This means that the
equations of motion (1.1) can be written in the form

L̇(z) = [L(z),M(z)] (2.3)

with some matrices L(z) and M(z) of size n×n, whose elements are functions on the phase space and
which depend on an additional parameter z called spectral parameter. Then the functions H1, . . . ,Hn

can be expressed in terms of the coefficients t1(z), . . . , tn(z) of the characteristic polynomial W (Λ,z)
of the matrix L(z)

W (Λ,z) = det(Λ1−L(z)) =
n

∑
k=0

(−1)ktk(z)Λn−k. (2.4)

The characteristic equation

W (Λ,z) = 0 (2.5)

defines the eigenvalue Λ(z) of L(z) as a function on the corresponding n-sheeted Riemannian sur-
face of the parameter z. The Baker-Akhiezer function Ω(z) is defined as the eigenvector of L(z)
corresponding to the eigenvalue Λ(z), i.e. we have

L(z)Ω(z) = Λ(z)Ω(z). (2.6)

After a suitable normalization, Ω(z) becomes a meromorphic function on the Riemannian surface
(2.5). Sklyanin’s formula hints that the coordinates z j of these poles play an important role. The
formula is based on the observation that for many models the variables z j Poisson commute and,
together with the corresponding eigenvalues Λ j =Λ(z j) of L(z j), or some functions p j of z j, provide
a set of separated canonical variables for the Hamiltonians H1, . . . ,Hn. One reason for this is that
since Λ j = Λ(z j) is an eigenvalue of L(z j), the pair (Λ j,z j) lies on the spectral curve (2.5), i.e.

W (Λ j,z j) = 0. (2.7)

If, furthermore, z j is a function of p j, then (2.7) provides the equations (2.2) as well.
The (complexified) rational Calogero-Moser system is a completely integrable Hamiltonian

system describing a collection of n identical particles on the affine line C. The phase space of
the Calogero-Moser system is T ∗(Cn \ {all diagonals}), the configurations are n distinct unla-
belled points q j ∈ C with momenta p j ∈ C. The Lax matrix of the system can be brought to the
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form [2, 10] [18, (53)]

L(z) = L+ igz−1eeeeee>, (2.8)

where eee ∈ Rn is the vector given by

eee = (1, . . . ,1)>, (2.9)

and the components of the z-independent matrix L are

L j,k = p jδ j,k + ig(q j−qk)
−1(1−δ j,k), j,k = 1, . . . ,n. (2.10)

As it was observed in [18, Section 5.2], the matrix determinant lemma

det(M+ xxxyyy>) = det(M)+ yyy>adj(M)xxx (2.11)

implies that the characteristic polynomial of L(z) simplifies to

det(Λ1−L(z)) = P0(Λ)− igz−1P1(Λ), (2.12)

where

P0(Λ) = det(Λ1−L) (2.13)

is the characteristic polynomial of L, and

P1(Λ) = eee>adj(Λ1−L)eee = tr(adj(Λ1−L)eeeeee>). (2.14)

(We note that adj(M) denotes the adjugate matrix of M.) In particular, the characteristic equation of
the spectral curve of the system takes the form of a graph of a rational function

z = ig
P1(Λ)

P0(Λ)
. (2.15)

It follows that if |z| < ∞, then the eigenvector equation (2.6) can always be solved, and the
solution has a finite magnitude. This means that all poles of the Baker-Akhiezer function Ω(z) are
at z = ∞. The eigenvalues of L(∞) are exactly the eigenvalues of the matrix L due to (2.8). Let us
denote these by λ1, . . . ,λn. They form one half of a set of conjugate variables. Since each λ j lies on
the level set z = ∞, the function z cannot be a conjugate variable to them on the moduli space of all
solutions of the system.

A similar situation occurs for the open Toda chain, which was resolved in [17, 2.20b]. In that
case one looks for another rational expression which provides the sought-after conjugate variables.
For the classical CM system such an expression for conjugate variables was conjectured in [16].
The formula turns out to be again a rational function, depending on the eigenvalues λ1, . . . ,λn, the
matrix L, and another matrix X , which, in a suitable basis, has the particle-positions q1, . . . ,qn along
its diagonal. The formula was verified using two different approaches, first in [5] and then in [8].

Our aim in the forthcoming sections is to adapt these methods to more general Calogero-Moser
systems and the moduli spaces of their solutions. Formally, the resulting formulas for the Calogero-
Moser space associated with the cyclic quiver look similar to the classical case [5, 8]. Hence, one
may expect that the formulas may hold more generally to Calogero-Moser spaces associated with
any “nice” quiver. For a detailed study of the geometry of moment maps for quiver representations,
see [4].
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3. Calogero-Moser space associated with the cyclic quiver

Let m be a positive integer. In this section we introduce the Calogero-Moser space associated with
the affine Dynkin quiver A(1)

m−1 shown in Figure 1 below.

1 2
. . .

m−2 m−1

0

Fig. 1. The cyclic quiver.

Starting from this quiver we first take the corresponding doubled quiver. This means that we
replace each edge with a pair of edges with opposite orientation to each other. We also equip the
quiver with a one-dimensional framing at the vertex 0, and construct the associated Calogero-Moser
quiver variety. See Figure 2 for a particular example. The precise procedure of the construction is
as follows.

V0

V1

V2

V3

V4

V5

V6

V∞

X0
P0

X1

P1
X2

P2

X3P3

X4

P4

X5

P5

X6
P6

w0

v0

Fig. 2. The doubled cyclic quiver for m = 7 with a special framing.

Fix a positive integer n and let V0,V1, . . . ,Vm−1 be vector spaces of dimension n and V∞ be a
one-dimensional vector space over the complex field C. Let Zm stand for the additive group Z/mZ
of integers modulo m, that is the cyclic group of order m. Let us consider the linear maps

Xi : Vi→Vi+1, Pi : Vi+1→Vi, i ∈ Zm (3.1)
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and by introducing a one-dimensional vector space V∞ over C we also define the linear maps

v0 : V∞→V0, w0 : V0→V∞. (3.2)

Take the direct sum V =V0⊕V1⊕·· ·⊕Vm−1 and define the transformations X ,P ∈ End(V ) by

X(vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) = Xm−1vvvm−1⊕X0vvv0⊕·· ·⊕Xm−2vvvm−2 (3.3)

and

P(vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) = P0vvv1⊕P1vvv2⊕·· ·⊕Pm−1vvv0. (3.4)

Let 1V denote the identity map on V . The commutator [X ,P] ∈ End(V ) of X and P can be expressed
as

[X ,P](vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) =
⊕
i∈Zm

(Xi−1Pi−1−PiXi)vvvi. (3.5)

Extend v0, w0 introduced in (3.2) to maps v : V∞→V and w : V →V∞, respectively, by

v(z) = v0(z)⊕000V1⊕·· ·⊕000Vm−1 and w(vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) = w0(vvv0). (3.6)

An m-tuple g = (g0,g1, . . . ,gm−1) ∈ Cm is called regular if

g0 + · · ·+gm−1 6= 0 and k(g0 + · · ·+gm−1) 6= gh + · · ·+gi−1 (3.7)

for all k ∈ Z and 1≤ h < i≤ m−1. We introduce g1V ∈ End(V ) via

g1V (vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) = g0vvv0⊕g1vvv1⊕·· ·⊕gm−1vvvm−1. (3.8)

Let Cm
n,g stand for the space of quadruples (X ,P,v,w) satisfying

[X ,P] = g1V + vw. (3.9)

The group GL(V )⊂ End(V ) of invertible linear transformations acts on Cm
n,g by

M · (X ,P,v,w) = (MXM−1,MPM−1,Mv,wM−1), M ∈ GL(V ). (3.10)

If g is regular, then this action is free. The equivariant Calogero-Moser space C m
n,g for the cyclic

group Zm is defined as the space of orbits, i.e.

C m
n,g
∼=Cm

n,g/GL(V ). (3.11)

In the rest of the paper we will suppress the dependence of C m
n,g on g, and simply write C m

n .
In [3] Chalykh and Silantyev introduced local coordinates on the open dense subset C m,X

n ⊂ C m
n

consisting of orbits with invertible and diagonalisable maps Xi. Namely, they diagonalised each of
the Xi by choosing such an M ∈GL(V ) that Q = MXM−1, when written in the standard basis, has an
m-by-m block matrix structure with blocks of size n. The non-zero blocks are at positions (i+1, i)
and are of the form

qqq := [Q]i+1,i = diag(q1, . . . ,qn), i ∈ Zm. (3.12)

By using the group action and the constraint (3.9) they showed that each point of C m,X
n can be

represented by (Q,L,Mv,wM−1) with Q as displayed above and L = MPM−1 having a similar block
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matrix structure with non-zero blocks at positions (i, i+1) whose components are

(Li) j,k := ([L]i,i+1) j,k =
(

p j− ciq−1
j

)
δ j,k + |g|qi

jq
m−i−1
k (qm

j −qm
k )
−1(1−δ j,k), (3.13)

i ∈ Zm, j,k ∈ {1, . . . ,n}, where p1, . . . , pn are arbitrary and ci, |g| are constants, namely

ci =
i

∑
r=0

gr−
m−1

∑
s=0

m− s
m

gs and |g|=
m−1

∑
s=0

gs. (3.14)

The maps Mv,wM−1 are expressed as column and row vectors, respectively, with m blocks of size
n each. The only non-zero blocks are the first ones, i.e.

[Mv]0 = (1 1 . . . 1)> and [wM−1]0 =−|g|(1 1 . . . 1). (3.15)

It was also proved in [3] that these local coordinates (p j/m,q j) are canonical. That is, the symplectic
structure on C m,X

n , obtained from the standard symplectic form on Cm
n , can be written as

ω = m
n

∑
j=1

d p j ∧dq j. (3.16)

The Hamiltonians can be written as

Hk(p,q) =
1

mk
tr(Lmk), k = 1, . . . ,n, (3.17)

and for m = 1 we have H1(p,q) = H(p,q) (1.2) with γ =−g2
0.

The same procedure can be repeated by introducing local coordinates (λ j,φ j) on the open dense
subset C m,P

n ⊂ C m
n consisting of orbits with diagonalisable maps Pi. We denote the corresponding

objects by putting a tilde over them. Namely, we have an invertible transformation M̃ ∈GL(V ) such
that the matrix of L̃ = M̃PM̃−1 has diagonal blocks at positions (i, i+1)

λλλ := [L̃]i,i+1 = diag(λ1, . . . ,λn), i ∈ Zm, (3.18)

the matrix of Q̃ = M̃XM̃−1 has non-zero blocks at positions (i+1, i)

(Q̃i) j,k := ([Q̃]i+1,i) j,k =
(
φ j + ciλ

−1
j

)
δ j,k−|g|λ m−i−1

j λ
i
k(λ

m
j −λ

m
k )−1(1−δ j,k). (3.19)

The maps ṽ = M̃v and w̃ = wM̃−1 can be written as vectors of size mn with only the first n entries
being non-zero:

[ṽ]0 = (1 1 . . . 1)> and [w̃]0 = |g|(1 1 . . . 1). (3.20)

Finally, the symplectic structure on C m,P
n can be written as

ω̃ = m
n

∑
j=1

dλ j ∧dφ j. (3.21)

hence the Poisson bracket of two functions f ,g ∈C∞(C m,P
n ) is given by

{ f ,g}= m
n

∑
j=1

(
∂ f
∂λ j

∂g
∂φ j
− ∂ f

∂φ j

∂g
∂λ j

)
. (3.22)

The Hamiltonians Hk (3.17), when expressed in terms of (λ j,φk), take a much simpler form

Hk =
1

mk
tr(L̃mk) =

1
k
(λ mk

1 + · · ·+λ
mk
n ), k = 1, . . . ,n. (3.23)
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4. Canonical spectral coordinates in the spinless case

Now we turn to the task of finding explicit formulas for variables conjugate to the eigenvalues
λ1, . . . ,λn of Pi, i.e. such functions θ1, . . . ,θn in involution that

{λ j,θk}= δ jk, j,k = 1, . . . ,n. (4.1)

It follows from (3.22) that the variables φ1/m, . . . ,φn/m are such functions. Proposition 4.1 below
provides explicit formulas for φk in terms of λ . To formulate the statement we need the following
functions on Cm

n that depend on an extra variable z:

A(z) = det(z1V −P), (4.2)

C(z) = tr(X adj(z1V −P)vw), (4.3)

D(z) = tr(X adj(z1V −P)). (4.4)

Notice that these functions, besides z, depend only on the class of the quadruple (X ,P,v,w) under
the GL(V )-action (we have suppressed this dependence). Therefore A,C,D descend to well-defined
functions on C m

n for which we use the same notation. Here X ,P,v,w are given by (3.3), (3.4), (3.6)
and adj denotes the adjugate map. We remark that C(z) can also be written as

C(z) = wXadj(z1V −P)v. (4.5)

Lemma 4.1. The characteristic polynomial A(z) = det(z1V − P) can be written in terms of
λ1, . . . ,λn as

A(z) =
n

∏
j=1

(zm−λ
m
j ). (4.6)

Proof. [Proof #1] Notice that A(z) is invariant under conjugation, i.e. constant along orbits of
GL(V ). Thus we can use L̃ = M̃PM̃−1 instead of P. Let us express A(z) in the basis in which the
matrix of L̃ is the one displayed in (3.18). This means that A(z) can be written as

A(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

z1n −λλλ 0 . . . 0

0 z1n −λλλ
. . .

...
...

. . . . . . . . .
...

0
. . . . . . . . . −λλλ

−λλλ 0 . . . 0 z1n

∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

, (4.7)

where the index m×m indicates that the number of blocks in each row and column is m. If we
partition the matrix as indicated by the dashed lines and apply the block matrix determinant formula

det
[

α β

γ δ

]
= det(α)det(δ − γα

−1
β ), (4.8)
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(with the assumption that z 6= 0) then we get

A(z) = zn

∣∣∣∣∣∣∣∣∣∣∣∣∣

z1n −λλλ 0 . . . 0

0 z1n −λλλ
. . .

...
...

. . . . . . . . .
...

0
. . . . . . . . . −λλλ

−z−1λλλ
2 0 . . . 0 z1n

∣∣∣∣∣∣∣∣∣∣∣∣∣
(m−1)×(m−1)

. (4.9)

By iterating this process (m−2) times we obtain

A(z) = z(m−2)n

∣∣∣∣∣ z1n −λλλ

−z−(m−2)λλλ
m−1 z1n

∣∣∣∣∣
2×2

. (4.10)

Applying the determinant formula (4.8) one more time yields

A(z) = z(m−1)n det(z1n− z−(m−1)
λλλ

m) = det(zm1n−λλλ
m) =

n

∏
j=1

(zm−λ
m
j ). (4.11)

This concludes the proof. �

Let us give an alternative and more direct proof.

Proof. [Proof #2] In this proof we partition the matrix the same way as in (4.7), but apply a different
version of the block matrix determinant formula, namely

det
[

α β

γ δ

]
= det(δ )det(α−βδ

−1
γ). (4.12)

This requires the calculation of the determinant and inverse of the bottom right block. Fortunately,
this block is an upper triangular matrix of size (m−1)n. Its determinant is

det(δ ) = z(m−1)n, (4.13)

and (with the assumption that z 6= 0) its inverse exists and is, of course, also upper triangular. The
(h, i)-th block of δ−1 is

[δ−1]h,i = zh−i−1
λλλ

i−h, if h≤ i, [δ−1]h,i = 0n, if h > i. (4.14)

The product βδ−1γ is simply λλλ
2[δ−1]1,m−1. Substituting everything into (4.12) yields

A(z) = z(m−1)n det(z1n− z−(m−1)
λλλ

m) = det(zm1n−λλλ
m) =

n

∏
j=1

(zm−λ
m
j ), (4.15)

which concludes the proof. �

Lemma 4.2. The inverse of z1V −P can be written explicitly in terms of λ1, . . . ,λn as an m×m
block matrix with blocks of size n of the form

[(z1mn− L̃)−1]h,i = zm−(i−h+1)(zm−λλλ
m)−1

λλλ
i−h, h, i ∈ Zm, (4.16)

where the exponents m− (i−h+1) and i−h are understood modulo m.
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If one does not wish to use mod m exponents one can write [(z1mn− L̃)−1] as

[(z1mn− L̃)−1]h,i = zh−i−1(zm−λλλ
m)−1

λλλ
m−(h−i), h, i = 0, . . . ,m−1, h > i, (4.17)

[(z1mn− L̃)−1]h,i = zm−(i−h+1)(zm−λλλ
m)−1

λλλ
i−h, h, i = 0, . . . ,m−1, h≤ i. (4.18)

Proof. A simple check confirms that the matrix defined by formulas (4.17)-(4.18) is such that
(z1mn− L̃)(z1mn− L̃)−1 = 1mn. �

We recall that the adjugate of an invertible linear transformation M can be written as adj(M) =

det(M)M−1, hence assuming that z1V −P is invertible we have the following

adj(z1V −P) = A(z)(z1V −P)−1, (4.19)

where A(z) = det(z1V −P) as defined in (4.2).
The next statement gives Theorem 1.1 for the spinless CM space C m

n .

Proposition 4.1. For a point [(X ,P,v,w)] ∈ C m,P
n let

r(z) =
D(z)
A′(z)

∈ C(z), (4.20)

where A(z) and D(z) are the functions defined in (4.2) and (4.4), respectively. Then the variables
φ1, . . . ,φn can be expressed as

φk = r(λk), k = 1, . . . ,n. (4.21)

Proof. Since A(z) and D(z) are both invariant under conjugation by elements of GL(V ), using
Q̃= M̃XM̃−1 instead of X and L̃= M̃PM̃−1 instead of P in these functions gives the same results. We
already expressed A(z) in terms of λ1, . . . ,λn in Lemma 4.1, so let us consider D(z) and calculate the
diagonal blocks of Q̃adj(z1mn− L̃). These blocks can be calculated by utilizing (4.19) and Lemma
4.2. Namely, we get

[Q̃adj(z1mn− L̃)]i,i = Q̃i−1A(z)zm−2
λλλ (zm−λλλ

m)−1, i ∈ Zm. (4.22)

The function D(z) can be written in terms of λ1, . . . ,λn as

D(z) = tr(Q̃adj(z1mn− L̃)) =
m−1

∑
i=0

tr([Q̃adj(z1mn− L̃)]i,i). (4.23)

Plugging (4.22) into this formula gives

D(z) =
m−1

∑
i=0

tr(Q̃iA(z)zm−2
λλλ (zm−λλλ

m)−1) =
m−1

∑
i=0

n

∑
j=1

(φ j− ciλ
−1
j )λ jzm−2

n

∏
`=1
( 6̀= j)

(zm−λ
m
` ). (4.24)

Substituting z = λk causes all terms with j 6= k to vanish leaving

D(λk) =
m−1

∑
i=0

(φk− ciλ
−1
k )λ m−1

k

n

∏
`=1
( 6̀=k)

(λ m
k −λ

m
` ). (4.25)
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Differentiating A(z) with respect to z yields

A′(z) = mzm−1
n

∑
j=1

n

∏
`=1
( 6̀= j)

(zm−λ
m
` ), (4.26)

which at z = λk takes the following form

A′(λk) = mλ
m−1
k

n

∏
`=1
( 6̀=k)

(λ m
k −λ

m
` ). (4.27)

Putting formulas (4.25) and (4.27) together gives

D(λk)

A′(λk)
=

1
m

m−1

∑
i=0

(φk− ciλ
−1
k ) = φk +

c0 + · · ·+ cm−1

mλk
. (4.28)

By using (3.14) a simple calculation reveals that c0 + · · ·+ cm−1 = 0 leaving us with

D(λk)

A′(λk)
= φk (4.29)

and the proof is complete. �

Next, we will prove the analogue of Sklyanin’s formula [8, 16] in the equivariant case, which
provides another set of variables θ1, . . . ,θn conjugate to λ1, . . . ,λn. The result gives Theorem 1.2 for
C m

n .

Proposition 4.2. For a point [(X ,P,v,w)] ∈ C m,P
n let us define the function

s(z) =
C(z)
|g|A′(z)

∈ C(z) (4.30)

with A(z) and C(z) defined in (4.2) and (4.3), respectively, and use it to define the variables
θ1, . . . ,θn as

θk = s(λk), k = 1, . . . ,n. (4.31)

Then θk can be written as

θk =
φk

m
+ fk(λ1, . . . ,λn), k = 1, . . . ,n, (4.32)

with such λ -dependent functions f1, . . . , fn that

∂ f j

∂λk
=

∂ fk

∂λ j
, j,k = 1, . . . ,n. (4.33)

In particular, the variables θ1, . . . ,θn given by (4.31) are conjugate to λ1, . . . ,λn, i.e. we have
{θ j,θk}= 0 and {λ j,θk}= δ j,k, j,k = 1, . . . ,n.
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Proof. Let us start with C(z). Using gauge invariance we replace the quadruple (X ,P,v,w) by
(Q̃, L̃, ṽ, w̃) just as we did before, to get

C(z) = tr(Q̃adj(z1mn− L̃)ṽw̃) = tr([Q̃adj(z1mn− L̃)]0,0[ṽw̃]0,0). (4.34)

Using (4.22) with i = 0 yields

C(z) = tr(Q̃m−1A(z)zm−2
λλλ (zm−λλλ

m)−1[ṽw̃]0,0). (4.35)

Since [ṽw̃]0,0 is the n×n matrix that has |g| for all of its components we get

C(z) = |g|
n

∑
j,t=1

(Q̃m−1) j,tλtzm−2
n

∏
`=1
( 6̀=t)

(zm−λ
m
` ). (4.36)

Substituting z = λk into this expression yields

C(λk) = |g|
n

∑
j=1

(Q̃m−1) j,kλ
m−1
k

n

∏
`=1
( 6̀=k)

(λ m
k −λ

m
` ). (4.37)

Putting formulas (4.27) and (4.37) together gives

θk =
C(λk)

|g|A′(λk)
=

1
m

n

∑
j=1

(Q̃m−1) j,k =
φk

m
+ fk(λ1, . . . ,λn) (4.38)

with

fk(λ1, . . . ,λn) =
cm−1

mλk
− |g|

mλk

n

∑
`=1
( 6̀=k)

λ m
k

λ m
k −λ m

`

. (4.39)

This implies that {λ j,θk}= δ j,k, j,k = 1, . . . ,n. The partial derivative of fk with respect to λ j ( j 6= k)
is

∂ fk

∂λ j
=−
|g|(λ jλk)

m−1

(λ m
k −λ m

j )
2 , (4.40)

which is clearly invariant under exchanging k and j, and therefore we have

∂ fk

∂λ j
=

∂ f j

∂λk
(4.41)

entailing {θ j,θk}= 0 for all j,k = 1, . . . ,n. This concludes the proof. �

5. Calogero-Moser spaces with spin variables and their canonical variables

In this section, we derive the analogues of the results obtained in the previous section to models
containing spin variables. Let d be a positive integer. The affine Dynkin quiver A(1)

m−1 in this case
is equipped with a framing of dimension d at each of its vertices, or, equivalently, with one d
dimensional framing which is connected to every other node. This latter formulation will be more
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convenient for us. Accordingly, we redefine the maps v,w (3.6) to be v : Cdm → V , w : V → Cdm

given by

v(z0, . . . ,zm−1) = v0(z0)⊕ v1(z1)⊕·· ·⊕ vm−1(zm−1) (5.1)

and

w(vvv0⊕ vvv1⊕·· ·⊕ vvvm−1) = (w0(vvv0),w1(vvv1), . . . ,wm−1(vvvm−1)), (5.2)

where vi : Cd→Vi, wi : Vi→Cd (i ∈ Zm) are linear maps. Points in the (equivariant) spin Calogero-
Moser space are represented by quadruples (X ,P,v,w) satisfying

[X ,P] = g1V + vw. (5.3)

The space itself is denoted as sC m
n , where we have suppressed the dependence on the stability vector

g as well as on the dimension d of the space of internal states. Two dual models of this space, similar
to the ones presented in Section 4, can be given. For details, see [3, Subsection 5.4.].

V0

V1

V2

V3

V4

V5

V6

V∞

X0
P0

w0

v0

X1

P1

w1v1

X2

P2w2v2

X3P3

w3

v3

X4

P4

w4

v4

X5

P5

w5 v5X6
P6 w6 v6

Fig. 3. The doubled cyclic quiver for m = 7 with the modified framing.

The objects we are most interested in are the ones corresponding to Q̃, L̃. With a slight abuse of
notation, we let Q̃, L̃ denote the spin versions as well. They have the same block matrix structure as
previously, but certain non-zero blocks are different. The map L̃ has the same matrix as before, so
for non-zero blocks we have

λλλ = [L̃]i,i+1 = diag(λ1, . . . ,λn), (5.4)

while the non-zero blocks of the matrix of Q̃ are given by

(Q̃i) j, j = ([Q̃]i+1,i) j, j = φ j +λ
−1
j

(
ci +

i

∑
r=0

[ṽrw̃r] j, j−
m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

)
(5.5)
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for i ∈ Zm, j = 1, . . . ,n and

(Q̃i) j,k = ([Q̃]i+1,i) j,k =−
m−1

∑
h=0

[ṽi−hw̃i−h] j,k
λ

m−h−1
j λ h

k

λ m
j −λ m

k
, (5.6)

for i ∈ Zm, j,k = 1, . . . ,n ( j 6= k). (The index i−h of ṽ and w̃ is understood modulo m.) The maps
ṽ, w̃ have matrices that satisfy the equation

m−1

∑
i=0

[ṽiw̃i] j, j = |g| (5.7)

for all j = 1, . . . ,n. It was shown in [3, Proposition 6.6] that the local coordinates
(λ j,φ j/m, [w̃i]α, j, [ṽi] j,α) on the spin Calogero-Moser space sC m

n are canonical, i.e. the reduced
symplectic form on sC m

n can be locally written as follows

ω̃ =
n

∑
j=1

(
mdλ j ∧dφ j +

m−1

∑
i=0

d

∑
α=1

[w̃i]α, j ∧ [ṽi] j,α

)
. (5.8)

The Poisson bracket of two functions f ,g on the spin Calogero-Moser space sC m
n can be locally

computed via

{ f ,g}=
n

∑
j=1

[
m
(

∂ f
∂λ j

∂g
∂φ j
− ∂ f

∂φ j

∂g
∂λ j

)
+

m−1

∑
i=0

d

∑
α=1

(
∂ f

∂ [w̃i]α, j

∂g
∂ [ṽi] j,α

− ∂ f
∂ [ṽi] j,α

∂g
∂ [w̃i]α, j

)]
. (5.9)

The expressions of the functions A,C,D on the spin Calogero-Moser space are formally the
same as in the spinless case. Namely,

A(z) = det(z1V −P), (5.10)

C(z) = tr(X adj(z1V −P)vw), (5.11)

D(z) = tr(X adj(z1V −P)). (5.12)

Again, the dependence of them on the class of (X ,P,v,w) is suppressed. In the spin case the product
vw is understood to be the sum of the tensor (or dyadic) products

vw =
m−1⊕
i=0

viwi, (5.13)

which can also be seen from the alternative expression

C(z) = wXadj(z1V −P)v. (5.14)

The next result gives Theorem 1.1 for the spin case.
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Proposition 5.1. The variables φ1, . . . ,φn can be expressed using the functions A and D as follows

φk =
D(λk)

A′(λk)
, k = 1, . . . ,n. (5.15)

Proof. Using expression (4.23) we get

D(z) =
m−1

∑
i=0

tr(Q̃iA(z)zm−2
λλλ (zm−λλλ

m)−1) =
m−1

∑
i=0

n

∑
j=1

(Q̃i) j, jλ jzm−2
n

∏
`=1
( 6̀= j)

(zm−λ
m
` ). (5.16)

Interchanging the order of summation and the identity

m−1

∑
i=0

(
ci +

i

∑
r=0

[ṽrw̃r] j, j−
m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

)
= 0, (5.17)

which follows from (5.7), give

D(z) =
n

∑
j=1

φ jmλ jzm−2
n

∏
`=1
( 6̀= j)

(zm−λ
m
` ). (5.18)

Substituting z = λk into this formula yields

D(λk) = φkmλ
m−1
k

n

∏
`=1
( 6̀=k)

(λ m
k −λ

m
` ) = φkA′(λk) (5.19)

and the proof is complete. �

The next statement completes the proof of Theorem 1.2 in the spin case.

Proposition 5.2. For a point [(X ,P,v,w)] ∈ sC m,P
n let

s(z) =
C(z)
|g|A′(z)

∈ C(z) (5.20)

with A(z) and C(z) defined in (5.10) and (5.11), respectively. Let us moreover define the variables
θ1, . . . ,θn as

θk = s(λk), k = 1, . . . ,n. (5.21)

Then the variables θ1, . . . ,θn given by the generalized Sklyanin’s formula (5.21) are conjugate to
λ1, . . . ,λn.
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Proof. A direct calculation shows that

C(z) =
m−1

∑
i=0

n

∑
j,t=1

[ṽiw̃i]t, j(Q̃i−1) j,tλtzm−2
n

∏
`=1
( 6̀=t)

(zm−λ
m
` ) (5.22)

hence by using (4.27) θk can be expressed as

θk =
1

m|g|

m−1

∑
i=0

n

∑
j=1

[ṽiw̃i]k, j(Q̃i−1) j,k. (5.23)

Taking (5.5)–(5.7) into account, the variable θk can be explicitly spelled out as

θk =
φk

m
+ ek(λk, ṽ, w̃)+ fk(λ1, . . . ,λn, ṽ, w̃), (5.24)

where

ek(λk, ṽ, w̃) =
1

m|g|λk

m−1

∑
i=0

[ṽiw̃i]k,k

(
ci−1 +

i−1

∑
r=0

[ṽrw̃r]k,k−
m−1

∑
s=0

m− s
m

[ṽsw̃s]k,k

)
, (5.25)

and

fk(λ1, . . . ,λn, ṽ, w̃) =−
1

m|g|

m−1

∑
h,i=0

n

∑
t=1
(t 6=k)

[ṽiw̃i]k,t [ṽi−h−1w̃i−h−1]t,k
λ

m−h−1
t λ h

k
λ m

t −λ m
k

. (5.26)

From (5.9) and (5.24) we get

{λ j,θk}= m
∂θk

∂φ j
= m

1
m

∂φk

∂φ j
= δ j,k. (5.27)

The explicit expression (5.24) lets us decompose {θ j,θk} as follows

{θ j,θk}=
1

m2 {φ j,φk}+
1
m
{φ j,ek}+

1
m
{e j,φk}+{e j,ek}+

1
m
{φ j, fk}+

1
m
{ f j,φk}

+{e j, fk}+{ f j,ek}+{ f j, fk}. (5.28)

Since φ j and φk Poisson commute and e j depends only on λ j, but not the other λ ’s, each of the first
four terms on the right-hand side is zero, that is

{φ j,φk}= 0, {φ j,ek}= 0, {e j,φk}= 0, {e j,ek}= 0. (5.29)

Hence we are left with

{θ j,θk}=
1
m
({φ j, fk}+{ f j,φk})+{e j, fk}+{ f j,ek}+{ f j, fk}, (5.30)

where the terms we grouped cancel, because for every j,k = 1, . . . ,n, we have

{ f j,φk}+{φ j, fk}=
∂ fk

∂λ j
−

∂ f j

∂λk
= 0. (5.31)
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Indeed, we have

∂ f j

∂λk
=− 1

m|g|

m−1

∑
h,i=0

[ṽiw̃i] j,k[ṽi−h−1w̃i−h−1]k, j
∂

∂λk

λ
m−h−1
k λ h

j

λ m
k −λ m

j
(5.32)

and a straightforward calculation shows that

∂

∂λk

λ
m−h−1
k λ h

j

λ m
k −λ m

j
=

∂

∂λ j

λ
h+1
j λ

m−h−2
k

λ m
j −λ m

k
. (5.33)

Thus

∂ f j

∂λk
=− 1

m|g|

m−1

∑
h,i=0

[ṽiw̃i] j,k[ṽi−h−1w̃i−h−1]k, j
∂

∂λ j

λ
h+1
j λ

m−h−2
k

λ m
j −λ m

k
. (5.34)

Rewriting the sum using a new pair of indices h′, i′ given by

h′ ≡ m−h−2 (mod m)

i′ ≡ i−h−1 (mod m)
(5.35)

we get

∂ f j

∂λk
=− 1

m|g|

m−1

∑
h′,i′=0

[ṽi′w̃i′ ]k, j[ṽi′−h′−1w̃i′−h′−1] j,k
∂

∂λ j

λ
m−h′−1
j λ h′

k

λ m
j −λ m

k
, (5.36)

which, by an exchange of j and k in (5.32), can be seen to coincide with ∂ fk/∂λ j. As a consequence,
we now have

{θ j,θk}= {e j, fk}+{ f j,ek}+{ f j, fk}. (5.37)

Let us consider the first term on the right-hand side. Since e j and fk do not depend on any of the
φ ’s and e j only depends on the j-th column (resp. row) of [w̃i] (resp. [ṽi]) we have

{e j, fk}=
m−1

∑
i=0

d

∑
α=1

(
∂e j

∂ [w̃i]α, j

∂ fk

∂ [ṽi] j,α
−

∂e j

∂ [ṽi] j,α

∂ fk

∂ [w̃i]α, j

)
. (5.38)

A straightforward computation yields

∂e j

∂ [w̃i]α, j
=

1
m|g|λ j

[
[ṽi] j,α

(
ci−1 +

i−1

∑
r=0

[ṽrw̃r] j, j−
m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

)
− m− i

m
[ṽi] j,α

m−1

∑
h=0

[ṽhw̃h] j, j +[ṽi] j,α

m−1

∑
h=i+1

[ṽiw̃i] j, j

]
. (5.39)

Collecting the common factor [ṽi] j,α and applying (5.7) give us

∂e j

∂ [w̃i]α, j
=

[ṽi] j,α

m|g|λ j

[
ci−1 +

i
m
|g|− [ṽiw̃i] j, j−

m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

]
. (5.40)

Similarly,

∂e j

∂ [ṽi] j,α
=

[w̃i]α, j

m|g|λ j

[
ci−1 +

i
m
|g|− [ṽiw̃i] j, j−

m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

]
. (5.41)
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As for the partial derivatives of fk, we have

∂ fk

∂ [w̃i]α, j
=−

[ṽi]k,α
m|g|

m−1

∑
h=0

[ṽi−h−1w̃i−h−1] j,k
λ

m−h−1
j λ h

k

λ m
j −λ m

k
(5.42)

and

∂ fk

∂ [ṽi] j,α
=−

[w̃i]α,k

m|g|

m−1

∑
h=0

[ṽi+h+1w̃i+h+1]k, j
λ

m−h−1
j λ h

k

λ m
j −λ m

k
. (5.43)

Putting formulas (5.40)–(5.43) together, {e j, fk} (5.38) is found to be

{e j, fk}=
1

(m|g|)2

m−1

∑
h,i=0

(
[ṽiw̃i]k, j[ṽi−h−1w̃i−h−1] j,k− [ṽiw̃i] j,k[ṽi+h+1w̃i+h+1]k, j

)
×

×
(

ci−1 +
i
m
|g|− [ṽiw̃i] j, j−

m−1

∑
s=0

m− s
m

[ṽsw̃s] j, j

)
λ

m−h−2
j λ h

k

λ m
j −λ m

k
. (5.44)

The Poisson bracket { f j,ek} is obtained from {e j, fk} (5.44) by changing its sign and exchanging j
and k. Hence we get

{ f j,ek}=−
1

(m|g|)2

m−1

∑
h′,i=0

(
[ṽiw̃i]k, j[ṽi+h′+1w̃i+h′+1] j,k− [ṽiw̃i] j,k[ṽi−h′+1w̃i−h′+1]k, j

)
×

×
(

ci−1 +
i
m
|g|− [ṽiw̃i]k,k−

m−1

∑
s=0

m− s
m

[ṽsw̃s]k,k

)
λ

m−h′−2
k λ h′

j

λ m
j −λ m

k
. (5.45)

Rewriting this using the new index h ≡ m− h′− 2 (mod m) allows us to collect the factors of the
terms with the same λ dependence in {e j, fk} and { f j,ek}. Then we add (5.44) and (5.45) together
and find that the terms with ci and i

m |g| cancel and as a result, we get

{e j, fk}+{ f j,ek}=
1

(m|g|)2λ jλk

m−1

∑
h=1

m−1

∑
i=0

([ṽiw̃i]k,k− [ṽiw̃i] j, j)×

× ([ṽiw̃i]k, j[ṽi−hw̃i−h] j,k− [ṽiw̃i] j,k[ṽi+hw̃i+h]k, j)
λ

m−h
j λ h

k

λ m
j −λ m

k
. (5.46)

Let us now consider the last term { f j, fk} in {θ j,θk} (5.37). Since f j and fk do not depend on
any of the φ ’s we have

{ f j, fk}=
n

∑
`=1

m−1

∑
i=0

d

∑
α=1

(
∂ f j

∂ [w̃i]α,`

∂ fk

∂ [ṽi]`,α
−

∂ f j

∂ [ṽi]`,α

∂ fk

∂ [w̃i]α,`

)
. (5.47)

We already calculated most of these partial derivatives in (5.42) and (5.43). The only ones remaining
are

∂ f j

∂ [w̃i]α, j
=− 1

m|g|

n

∑
t=1
(t 6= j)

[ṽi]t,α
m−1

∑
h=0

[ṽi+h+1w̃i+h+1] j,t
λ

m−h−1
t λ h

j

λ m
t −λ m

j
(5.48)
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and

∂ f j

∂ [ṽi] j,α
=− 1

m|g|

n

∑
t=1
(t 6= j)

[w̃i]α,t

m−1

∑
h=0

[ṽi−h−1w̃i−h−1]t, j
λ

m−h−1
t λ h

j

λ m
t −λ m

j
. (5.49)

for α = 1, . . . ,d. Now we break up the sum (5.47) into six parts, namely

{ f j, fk}=
n

∑
`=1

( 6̀= j,k)

m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [w̃i]α,`

∂ fk

∂ [ṽi]`,α︸ ︷︷ ︸
=:A

−
n

∑
`=1

( 6̀= j,k)

m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [ṽi]`,α

∂ fk

∂ [w̃i]α,`︸ ︷︷ ︸
=:B

+
m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [w̃i]α, j

∂ fk

∂ [ṽi] j,α︸ ︷︷ ︸
=:C

−
m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [ṽi] j,α

∂ fk

∂ [w̃i]α, j︸ ︷︷ ︸
=:D

+
m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [w̃i]α,k

∂ fk

∂ [ṽi]k,α︸ ︷︷ ︸
=:E

−
m−1

∑
i=0

d

∑
α=1

∂ f j

∂ [ṽi]k,α

∂ fk

∂ [w̃i]α,k︸ ︷︷ ︸
=:F

. (5.50)

Fortunately, these expressions are related. For example, we get B if we exchange j and k in A. We
denote this by writing that B = (A) j↔k. There are similar relations between the expressions C and
F , as well as between the expressions D and E. In short, we have

B = (A) j↔k, C = (F) j↔k, D = (E) j↔k. (5.51)

This observation saves us half the work as we only need to calculate, say A, F , and E. First, we
calculate A and find that

A =
1

(m|g|)2

n

∑
`=1

( 6̀= j,k)

m−1

∑
i,h,h′=0

[ṽiw̃i] j,k[ṽi−h−1w̃i−h−1]`, j[ṽi+h′+1w̃i+h′+1]k,`
λ

2m−h−h′−2
` λ h

j λ h′
k

(λ m
` −λ m

j )(λ
m
` −λ m

k )
. (5.52)

Second, we calculate F and get

F =
1

(m|g|)2

n

∑
`=1
( 6̀=k)

m−1

∑
i,h,h′=0

[ṽiw̃i]`, j[ṽi+h+1w̃i+h+1]k,`[ṽi+h′+1w̃i+h′+1] j,k
λ

m−h−1
` λ

m−h′−1+h
k λ h′

j

(λ m
` −λ m

k )(λ m
k −λ m

j )
. (5.53)

Third, we calculate E and get

E =
1

(m|g|)2

n

∑
`=1
( 6̀=k)

m−1

∑
i,h,h′=0

[ṽiw̃i] j,`[ṽi−h−1w̃i−h−1]`,k[ṽi−h′−1w̃i−h′−1]k, j
λ

m−h−1
` λ

m−h′−1+h
k λ h′

j

(λ m
` −λ m

k )(λ m
k −λ m

j )
. (5.54)

We obtain explicit formulas for B, C, and D from (5.52)–(5.54) and the relations (5.51). Namely,

B =
1

(m|g|)2

n

∑
`=1

( 6̀= j,k)

m−1

∑
i,h,h′=0

[ṽiw̃i]k, j[ṽi−h′−1w̃i−h′−1]`,k[ṽi+h+1w̃i+h+1] j,`
λ

2m−h−h′−2
` λ h

j λ h′
k

(λ m
` −λ m

j )(λ
m
` −λ m

k )
, (5.55)
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C =
1

(m|g|)2

n

∑
`=1
( 6̀= j)

m−1

∑
i,h,h′=0

[ṽiw̃i]`,k[ṽi+h+1w̃i+h+1] j,`[ṽi+h′+1w̃i+h′+1]k, j
λ

m−h−1
` λ

m−h′−1+h
j λ h′

k

(λ m
` −λ m

j )(λ
m
j −λ m

k )
, (5.56)

and

D =
1

(m|g|)2

n

∑
`=1
( 6̀= j)

m−1

∑
i,h,h′=0

[ṽiw̃i]k,`[ṽi−h−1w̃i−h−1]`, j[ṽi−h′−1w̃i−h′−1] j,k
λ

m−h−1
` λ

m−h′−1+h
j λ h′

k

(λ m
` −λ m

j )(λ
m
j −λ m

k )
. (5.57)

By a suitable change of indices in D and F we see that in A−D−F almost all terms cancel. The
only ones remaining are the terms with `= k in D and the terms with `= j in F . As a consequence,
we get

A−D−F =
1

(m|g|)2

m−1

∑
i,h,h′=0

(
[ṽiw̃i]k,k[ṽi−h−1w̃i−h−1]k, j[ṽi−h′−1w̃i−h′−1] j,k+

+[ṽiw̃i] j, j[ṽi+h′+1w̃i+h′+1]k, j[ṽi+h+1w̃i+h+1] j,k
)λ

m−h′−1+h
j λ

m−h−1+h′
k

(λ m
j −λ m

k )2 . (5.58)

With the same type of computation we obtain

−B+C+E =− 1
(m|g|)2

m−1

∑
i,h,h′=0

(
[ṽiw̃i]k,k[ṽi+h′+1w̃i+h′+1]k, j[ṽi+h+1w̃i+h+1] j,k+

+[ṽiw̃i] j, j[ṽi−h−1w̃i−h−1]k, j[ṽi−h′−1w̃i−h′−1] j,k
)λ

m−h′−1+h
j λ

m−h−1+h′
k

(λ m
j −λ m

k )2 . (5.59)

Since the exponents of λ j and λk do not depend on i and depend only on the difference of h and h′,
but not on the individual indices, introducing a new index h′′ := h−h′ and adding (5.58) to (5.59),
yields an explicit formula for the Poisson bracket { f j, fk}. Namely, we get

{ f j, fk}=−
1

(m|g|)2λ jλk

m−1

∑
h′′=1

m−1

∑
i=0

([ṽiw̃i]k,k− [ṽiw̃i] j, j)×

× ([ṽiw̃i]k, j[ṽi−h′′w̃i−h′′ ] j,k− [ṽiw̃i] j,k[ṽi+h′′w̃i+h′′ ]k, j)
λ

m−h′′
j λ h′′

k

λ m
j −λ m

k
. (5.60)

This is the same expression as (5.46) only with opposite sign. Hence these two terms in {θ j,θk}
cancel and we obtain

{θ j,θk}= 0. (5.61)

Finally, let us observe that due to (5.7) we can take any fixed h ∈ Zm and β ∈ {1, . . . ,d} and express
[ṽh] j,β in terms of [ṽi] j,α and [w̃i′ ]α ′, j with i, i′ ∈ Zm (i 6= h) and α,α ′ ∈ {1, . . . ,d} (α 6= β ) for all
j = 1, . . . ,n. This means that [ṽh] j,β ( j = 1, . . . ,n) are not independent coordinates on sC n

m, thus

{θk, [ṽh] j,β}= 0, {θk, [w̃h]β , j}= 0 (5.62)

for all j,k = 1, . . . ,n. �
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Remark 5.1. Let us list some important special cases of our results. In [3], it was shown that the
m = 2, d = 1 case corresponds to the rational Calogero-Moser system of type Bn (and with g1 = 0
of type Dn). Setting m = 1, d > 1 produces the Gibbons-Hermsen system [6], whereas the m = 2,
d > 1 case contains the type Bn variant of the Gibbons-Hermsen system.

6. The equivariant geometry of the interpolation curves

Now we briefly describe the geometry of the interpolation curves appearing in Theorems 1.1 and
1.2. These are the affine plane curves

C1 = {(z,r(z)) : z ∈ C} ⊂ C2 and C2 = {(z,s(z)) : z ∈ C} ⊂ C2. (6.1)

Both of these are rationally parametrized. Hence, they can be completed to rational curves in CP2.
The expressions (4.26), (4.36), (5.22), (4.24) and (5.18) show that the polynomials A′(z), C(z) and
D(z) in all cases are divisible by zm−2. After cancellations we can write

r(z) =:
p1(zm)

zq(zm)
and s(z) =:

p2(zm)

zq(zm)
, (6.2)

where p1(z), p2(z) and q(z) are polynomials of degree n−1. The defining equation of the curve Cδ

is

q(zm)zy− pδ (z
m) = 0, δ = 1,2. (6.3)

Let ∆ be the root system Am−1 and let us choose a primitive m-th root of unity ω . There corre-
sponds to ∆ a subgroup G∆ of SL(2,C), a cyclic subgroup of order m, which is generated by the
matrix

σ =

(
ω 0
0 ω−1

)
. (6.4)

All irreducible representations of G∆ are one-dimensional, and are given by ρ j : σ 7→ω j, for j ∈Zm.
The corresponding McKay quiver is the cyclic Dynkin diagram of type Ã(1)

m−1. The group G∆ acts on
C2; the quotient variety C2/G∆ has an isolated singularity of type Am−1 at the origin. In coordinates,
the ring of functions H0(OC2/G∆

) =C[y,z]G∆ is generated by a= zm, b= ym and c= zy which satisfy
the relation

ab = cm. (6.5)

As it was remarked in [3, Section 5.1] the set of eigenvalues (λ m
1 , . . . ,λ m

n ) of the transformation
P0P1 . . .Pm−1 ∈ End(V0) determines (λ1, . . . ,λn) only up to permutations and multiplication by m-
th root of unity. Therefore, the coordinates λi,φi are only well-defined up to the action of Sn n
G∆, where the Sn component permutes {λi} and {φi} simultaneously, and the generator of the G∆

component maps (λi,φi) to (ωλi,ω
−1φi).

The following lemma is straightforward from (4.32) and (5.24).

Lemma 6.1. When λi is replaced by ωλi, then θi is replaced by ω−1θi. Therefore, the coordinates
λi, θi are also well-defined only up to the action of Sn nG∆.

Corollary 6.1. The pairs of variables (λi,φi) and (λi,θi) are well-defined on C2/G∆.
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As a result, the curves C1 and C2 are only well-defined up to the action of G∆. But they descend
to well-defined curves on the quotient space C2/G∆.

Corollary 6.2. The curves C1 and C2 descend to well-defined rational curves C1/G∆ and C2/G∆ on
C2/G∆. When considered as a subvariety of C3 = Spec(C[a,b,c]), C1/G∆ and C2/G∆ are given by
the intersection of the surface (6.5) and the surface

q(a)c− pδ (a) = 0, δ = 1,2, (6.6)

respectively, or equivalently, the surface swept out by the translations of the graph of the degree
n−1 interpolating function

c =
pδ (a)
q(a)

, δ = 1,2 (6.7)

in the b-direction. In this way we obtain a map

C m
n → RatCurvesn(C2/G∆) (6.8)

defined on the dense open subset C m,P
n ⊂ C m

n , where RatCurvesn(C2/G∆) is the space of rational
curves of degree n on C2/G∆.

Conversely, if C ⊂ C2/G∆ is a rational curve of degree n which is of the above form, then any
distinct n points on it determine a point of C m,P

n , such that the associated curve Cδ/G∆ (resp. C2/G∆)
to this point is C. This correspondence associates the point of C m

n with coordinates {(λi,φi)} (resp.
{(λi,θi)}) to the n points {(λi,φi)} ⊂C (resp. {(λi,θi)} ⊂C).
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