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ABSTRACT
Models for large, sparse graphs are found in many applica-
tions and are an active topic in machine learning research.
We develop a new generative model that combines rich block
structure and simple, efficient estimation by collapsed Gibbs
sampling. Novel in our method is that we may learn the
strength of assortative and disassortative mixing schemes
of communities. Most earlier approaches, both based on
low-dimensional projections and Latent Dirichlet Allocation
implicitely rely on one of the two assumptions: some algo-
rithms define similarity based solely on connectedness while
others solely on the similarity of the neighborhood, leading
to undesired results for example in near-bipartite subgraphs.
In our experiments we cluster both small and large graphs,
involving real and generated graphs that are known to be
hard to partition. Our method outperforms earlier Latent
Dirichlet Allocation based models as well as spectral heuris-
tics.
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Management]: Database Applications—data mining
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1. INTRODUCTION
In recent years, the structure of large networks has become

a popular research topic both in physics, statistics and ma-
chine learning and the search for statistically justified models
that produce practical results in large networks of millions
nodes or more remains open. Models are in particular ap-
plied for community analysis and network clustering [16].

Since the beginning, Latent Dirichlet Allocation (LDA)
promised to be a candidate for network analysis [8]. LDA
[5] is a popular latent class model, originally developed for
document collections in the “bag of words” representation.
Later it was applied in a wide variety of areas including im-
age processing, web classification [4], and network clustering
[21]. The latter is called the SSN-LDA, which uses the LDA
on a document-document linking matrix. It assumes that
each edge is generated from a latent topic with a distribu-
tion specific to the sending vertex. To each topic a distribu-
tion over the receiving vertices is associated. These topics
form the latent “community” structure of the network, and
links arise from parameters that are convex (non-negative)
combinations of these communities. The parameters of LDA
can be estimated with either a sampling or with variational
techniques [2]. The collapsed Gibbs sampler is among the
simplest and most popular estimation methods.

One of the biggest challenges is to develop methods that
can be used also on large-scale networks that appear in the
real data mining problems. In this paper we introduce a new
model, the Interaction Dirichlet Block Model (IDBM) that
combines the Poisson-like link model of LDA with a simple,
non-mixing block structure. We apply collapsed Gibbs sam-
pling for inference that allows sparse representation since
it only processes existing edges. This makes estimation on
large networks feasible and simple. Two sampling schemes
are introduced, and both are implemented, optimized and
tested. The block model is compared to other approaches
on small test networks, on a medium size artificial network
and on a large-scale data set.

An important concept of network clustering is the assor-
tative mixing scheme or homophily : nodes are expected to
have links with similar ones [15]. An opposite, bipartite-like
concept is disassortative mixing, also called as heterophily or
homophoby, in which the vertices form groups with the oth-
ers that have different attributes. Prior to our work, graph
partitioning methods typically used implicite assumptions
on the mixing scheme and were unable to adapt to a partic-
ular class of graphs. For example, LDA is able to represent
bipartite or disassortative elements with its latent structure
since each node has a sender and a receiver role; these roles



are however not explicitely connected. As another example,
the spectral method [7] approximates the adjacency matrix,
in which nodes are represented by the vector of their neigh-
bors and similarity corresponds to neighborhood overlap,
involving an implicite, strong disassortative component.

The key element in our model is that we allow the nodes
to play different roles in different interactions. Moreover,
our model generated links not only between the members
of the same community; the nodes may interact with nodes
from other communities. We use our method via Gibbs in-
ference and Bayesian estimation to obtain graph clustering.
Our method outperforms SSN-LDA, spectral clustering, and
two other models [1, 20] described next, both over small
networks from Mark Newman’s collection as described in
Section 4.3, the WEBSPAM-UK2007 host graph [4], and
generated graphs from a class believed to be hard to cluster
[9].

1.1 Related results
A closely related model, the Interaction Component Model

for Communities (ICMc), also represents the edge probabili-
ties as convex combinations of communities, but the sending
and the receiving probabilities are symmetrically sampled
from the same multinomial distribution [20]. Here multi-
nomials describe memberships probabilities of the vertices
for a given component. Another multinomial represents the
probability of a component. Hyperparameters act as pri-
ors for the multinomials and control the properties of the
clustering: one influences component size, while the other
controls the amount of component overlap. ICMc is capable
of producing assortative grouping only.

The Mixed Membership Stochastic Block model (MMSB)
[1] is a slightly different hierarchical generative model that
allows more inter-group connections. It was originally pro-
posed to explain the protein–protein interaction graph of
cells. The structure of MMSB captures the different roles
a protein can play in different biological processes. It is as-
sumed that the proteins participate in many biological pro-
cesses (latent components), and they can belong to different
functional classes: in each reaction one protein present one
function. These classes are called blocks, but they can be
thought as latent components. It is important to note that
this concept is different from both the assortative and dis-
assortative mixing schemes, since it allows a general cohe-
sion between the nodes based on all types of relations. The
stochastic block model assigns two latent classes to each re-
lationship and models the probability of reacting with each
other for every pair of functional classes. In contrast to LDA
and ICMc, not only links within the blocks but also links be-
tween the blocks are modeled. MMSB is parametrized with
a Bernoulli mixing matrix between blocks. The structure
of this model is very rich, but computational inference be-
comes challenging, and representation of sparsity requires
additional tricks.

2. A BLOCK MODEL FOR SPARSE GRAPHS
In this section a new latent component mixture model is

proposed for networks. Then, collapsed Gibbs sampling es-
timation algorithm with two different sampling schemes are
developed for this new model to effectively infer the model
parameters. The finite mixture model presented here merges
the ideas of ICMc and MMSB.

The three generative models described in the previous sec-
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Figure 1: The graphical model representing the
IDBM

tion share many properties and also differ in many aspects.
Efficient estimation algorithms allow to use LDA and ICMc
on graphs having millions of nodes, but the formation of
links in real networks is usually not restricted to either of
the mixing schemes, since usually several processes lie be-
hind the structure. MMSB introduces the concept of roles.
Each of the nodes can play several roles in different context,
and this is a good explanation for the mentioned richness
of link establishment, the block structure. However, esti-
mation of MMSB on very large graphs is difficult since it
has too many parameters and the parametrization is not
straightforward.

While community models are suitable for many social net-
works and are easily parametrized, they assume tightly inte-
grated subnetworks. Our Interaction Dirichlet Block Model
(IDBM) is an extension of the ICMc which allows the nodes
to play different roles in different reactions, similarly to as in
the MMSB. In the concept of ICMc the links are established
only between the members of the same communities, but the
nodes can belong to more than one community. In the block
models, the links between the communities (or blocks) are
the organic part of the structure.

Similarly to the ICMc, a vector is associated to the latent
components that describes how strongly the nodes belong
to that component, or equivalently how well they can play
the role of that block. The assumption behind IDBM is that
links are generated first according to a latent distribution;
then the link connects to a given node if it is able to play
the corresponding role. This yields an explanation of linkage
more powerful than that of community models.

2.1 Generative process
The Bayesian network of IDBM is shown in Figure 1. The

generative process with K topics, E edges and V vertices is
the following:

1. Draw ~θ ∼ DirK(α), the probability of link generation

2. For each topic k ∈ [1,K]:

(a) Draw ~ψk ∼ DirK( α
K

), the probability of receiving
a link from another topic

(b) Draw ~mk ∼ DirV (β), the topic membership prob-
ability

3. For each edge e ∈ [1, E]:



(a) Draw ge ∼Mult(~θ), the tail topic of link e

(b) Draw he ∼Mult(~ψge), the head topic of link e

(c) Draw se ∼Mult(~mge), the tail node of link e

(d) Draw te ∼Mult(~mhe), the head node of link e

Role modeling is achieved by assigning two topics to each
of the edges. The head and tail topics are the roles of the
head and tail nodes, respectively. For a link, the head and
tail nodes are sampled by taking the possible node roles into
account. Similar to the MMSB, our IDBM models directed
graphs but can be easily modified for undirected ones as
well.

Parameters ~θ and the matrix Ψ = {~ψk}Kk=1 are key in the
block model as they define the probability for each block
to generate links, and the probability for all the topics to
receive links. For instance, the probability for a new link to
be generated by topic k is θk, and if this happens, then the
probability for topic l to receive it is ψkl. If the rows of the
matrix Ψ are multiplied by the corresponding coordinates of
~θ, then we get the cross linkage probability of the topics, a
matrix equivalent to η in the MMSB.

3. PARAMETER ESTIMATION
Although our Interaction Dirichlet Block Model is rela-

tively simple, similarly to LDA its exact inference is gener-
ally intractable. Since the dimension of the model is quite
high, we propose the use of collapsed Gibbs sampling, a spe-
cial case of Gibbs sampling where the parameters (in this

case ~θ, Ψ and M) are marginalized out.
The two hyperparameters α and β contain the a priori

knowledge about the latent components and the parame-
ters. It is assumed that both of them are the same for all
components and nodes, thus the model is symmetric. Nev-
ertheless, it is possible to derive similar sampling formulas
for asymmetric priors. In particular, the hyperparameter α
controls the size of the components and also the correlation
between them. For larger α, the sizes of the components are
closer and inter-connectivity is strong. On the other hand, β
represents the a priori component distributions of the nodes.
The effect of a large β value is that a node is expected to
belong to many components. In practice the variables ~s and
~t are observed, but for estimating the parameters ~θ, Ψ and
M , the joint conditional distribution of the observed and
latent variables is needed given the hyperparameters α and
β.

3.1 Joint distribution
According to the graphical model, the joint distribution of

the observed and latent variables is factoring to the following
terms

p(~g,~h,~s,~t|M,Ψ, ~θ) = p(~s|~g,M)p(~t|~h,M)p(~h|~g,Ψ)p(~g|~θ) ,
(1)

where M = {~mk}Kk=1 and Ψ = {~ψk}Kk=1.
The conditional distributions of the observed variables are

p(~s|~g,M) =
EY
e=1

mge,se =
KY
k=1

VY
i=1

m
nki
ki , (2)

p(~t|~h,M) =

EY
e=1

mhe,te =

KY
k=1

VY
i=1

m
pki
ki , (3)

where nki refers to the number of times that node i has been
observed as a source node for an edge with generator topic
k, and pki refers to the number of times that node i has been
observed as an end node for an edge with receiver topic k.

Using these results the distribution of ~s and ~t given ~g, ~h, β
can be calculated by marginalization

p(~s,~t|~g,~h, β) =

Z
p(~s,~t|~g,~h,M)p(M |β)dM =

=

KY
k=1

B(~nk + ~pk + β)

B(β)
, (4)

where B is the multinomial Beta function.
The distribution of ~g given ~θ can be written as

p(~g|~θ) =

EY
e=1

θge =

KY
k=1

θ
nk
k , (5)

where ~nk =
PV
i=1 nki is the total number of times that the

topic k has been observed as link generator, and similarly
~pk =

PV
i=1 pki is the total number of times that the topic k

has been observed as link absorber. With this result, it is
possible to derive the distribution of ~g given α by integrating

out ~θ

p(~g|α) =

Z
p(~g|~θ)p(~θ|~α)d~θ =

B(~n+ α)

B(α)
. (6)

The third step is to get rid of Ψ. The distribution of ~h
given ~g and Ψ is

p(~h|~g,Ψ) =

EY
e=1

ψge,he =

KY
k=1

KY
l=1

ψ
rkl
kl , (7)

where rkl refers to the number of times that topic l was
observed as end topic when start topic was k. Similarly to

the first two steps, the distribution of ~h given ~g and α is
achieved by marginalization

p(~h|~g, α) =

Z
p(~h|~g,Ψ)p(Ψ|α)dΨ =

KY
k=1

B(~rk + α
K

)

B( α
K

)
. (8)

Putting all together the joint distribution of the observ-
able and latent variables is

p(~s,~t,~g,~h|α, β) = p(~s,~t|~g,~h, β)p(~g|α)p(~h|~g, α) =

B(~n+ α)

B(α)

KY
k=1

B(~nk + ~pk + β)

B(β)

B(~rk + α
K

)

B( α
K

)
. (9)

3.2 One-phase collapsed Gibbs sampling
An efficient collapsed Gibbs sampling procedure is needed

to sample sequentially the two latent components for each
edge from the conditional distribution of that edge given
all the other links and component assignments in the net-
work. In this case, the variables g and h are treated as one,
two dimensional random variable for each edge. This latent
variable is sampled from a two dimensional multinomial dis-
tribution.

Since rge = nge , the conditional probability of link e given
the rest of the complete data is

p(se, te, ge, he|~s¬e,~t¬e, ~g¬e,~h¬e) =



One-Phase-GS Two-Phase-GS
Initialization Initialization
For i ∈ [1, I] For i ∈ [1, I]

For each edge e ∈ [1, E] For each edge e ∈ [1, E]
Sample (ge, he) Sample ge ∼ p(ge| . . . )
∼ p(ge, he| . . . ) Sample he ∼ p(he| . . . )

Table 1: The one- and two-phase Gibbs sampling
algorithms for IDBM

rgehe + α
K

E +Kα
· (ngese + pgese + β)(nhete + phete + β)

(nge + pge + V β)([nhe + phe + V β]− δgehe)
.

(10)

3.3 Two-phase collapsed Gibbs sampling
In contrast to the one-phase Gibbs sampler developed in

the previous section that samples the two latent variables g
and h simultaneously from the joint conditional distribution,
it is possible to sample the two latent variables g and h
separately. In this case, for each edge g is drawn first from its
one-dimensional conditional distribution, and then similarly
h is sampled in the second phase of each iteration.

The conditional probability for the absorbing component
of link e given the rest of the network is

p(te, he|~s¬e,~t¬e, ~g¬e,~h¬e)

=

Z Z
p(se, te, ge, he|~s¬e,~t¬e, ~g¬e,~h¬e)dsdg =

=
nhete + phete + β

[nhe + phe + V β]− δgehe

· phe + α

E +Kα
. (11)

Using this it is possible to calculate the conditional proba-
bility of the generating component for each edge

p(se, ge|~s¬e,~t, ~g¬e,~h) =
p(se, te, ge, he|~s¬e,~t¬e, ~g¬e,~h¬e)

p(te, he|~s¬e,~t¬e, ~g¬e,~h¬e)
=

=
rgehe + α

K

phi + α
· ngese + pgese + β

nge + pge + V β
, (12)

where he is the current latent component absorbing the edge.
Similarly, the conditional probability of the absorbing com-
ponent is

p(te, he|~s,~t¬e, ~g,~h¬e) =
rgehe + α

K

nge + α
· nhete + phete + β

nhe + phe + V β
,

(13)
where ge is the current latent component generating the
edge.

For each edge the sampling of the two latent variables
requires O(K2) steps in the case of the one-phase scheme,
while in the two-phase method onlyO(K) steps are required.
If the number of iterations is I, then the total running time
of the first and second cases is O(IEK2) and O(IEK), re-
spectively. Thus, the two-phase method is comparable to the
standard implementation of ICMc and LDA, and in the case
of sparse graphs it outperforms the O(IV 2K) time MMSB.
On the other hand, without any further optimization it is
slower than the best implementations of ICMc and LDA [18],
[3].

4. EXPERIMENTS AND RESULTS
Initial tests confirmed what theory suggests about the rel-

ative performance of the two samplers: the two-phase sam-
pler was much more efficient in terms of both speed and
memory consumption. Because it also converged well, the
two-phase algorithm was chosen to be evaluated and be com-
pared to other methods.

The experiments were carried out on three different types
of graphs using four different models: IDBM with two-phase
Gibbs sampler, ICMc, LDA and MMSB. We used our own
implementations of IDBM and ICMc1, and for the other
models the R package ’lda’ developed by Jonathan Chang
[6]. It contains collapsed Gibbs samplers for LDA and MMSB,
and is freely available. As it turns out from the tests, the
sampler for LDA is fast enough, but the MMSB sampler is
much slower than the others. It was able to run only on
the smallest graphs with a few number of components in a
reasonable time.

In addition to the experiments with all four models on
a set of small graphs, the faster LDA, ICMc, and IDBM,
together with a spectral clustering algorithm, were tested
on a medium-size artificial graph, which has properties that
makes it difficult to cluster with classic algorithms [10] (see
section 4.4).

Last, LDA, ICMc, IDBM and spectral clustering were
compared on a large web graph. In all of the experiments
we took the most likely (MAP) division of the nodes given
an average over the samples in the case of the sampling al-
gorithms.

4.1 Clustering quality measures
The quality of a graph partitioning can be measured in

several ways. These measures belong to two classes. In the
first case we only use information encoded in the graph itself,
while in the second case we use external ground truth, the
natural clusters of the nodes.

Modularity, one of the most common graph cut quality
functions, measures the ratio of intra-cluster edges minus
the square of the ratio of the edges ending up in the cluster.
The directed version defined in [12] is more appropriate in
the cases of directed graphs while it applies unchanged to
undirected networks as well. The modularity of a clustering
of a directed network is defined as

Q =
X

clusters s

»
|E(Cs, Cs)|
|E| − |E(Cs, Cs)|

|E| · |E(Cs, Cs)|
|E|

–
,

(14)
where E is the set of all edges and E(X,Y ) is the set of edges
with tail in X and head in Y . Shiga et al. [19] pointed out
that modularity is not balanced by the size of the clusters,
which means that in a clustering with high modularity a
group might become small when affected by outliers. They
proposed a slightly modified version, called the normalized
modularity, which is balanced by the cluster size and for
directed networks it is defined as

Q′ =
X

clusters s

N

Ns

»
|E(Cs, Cs)|
|E| − |E(Cs, Cs)|

|E| · |E(Cs, Cs)|
|E|

–
,

(15)
where N is the total number of nodes and Ns is the number
of vertices in the cluster s. The larger the modularity or the
normalized modularity is, the more edges are connecting

1http://www.ilab.sztaki.hu/~adamgyenge/mcnet/



the members of the same cluster and the less connect the
members of the different clusters, and therefore the edges
are more dense in the groups.

In the case of graph clustering, the estimated and the true
clusters can be treated as random variables. A contingency
table N can be formed, where Nij is the number of elements
that belong to cluster i in the estimation and to cluster j in
the ground truth. The variation of information is defined
in [13] as

dV I(X,Y ) = H(X)+H(Y )−2I(X,Y ) = H(X|Y )+H(Y |X) ,
(16)

where H(X) and H(Y ) are the (absolute) entropy, H(X|Y )
and H(Y |X) are the relative entropies of the estimated and
true clustering, respectively, and I(X,Y ) is the mutual infor-
mation between them. The variation of information satisfies
several naturally arising axioms for (clustering) distances.
In particular, it is a metric on the set of all partitions of a
graph. Therefore, it is convenient to use the variation of in-
formation as the measure to compare the estimated and the
true clustering instead of other entropy based measures, e.g.
perplexity. While higher mutual information means better
clustering, for the variation of information (or VI distance)
the lower value shows proximity to the ground truth.

4.2 Initialization and convergence
In the initialization step for the sampler of the IDBM and

ICMc, edges were randomly associated to the topics inde-
pendently of each other. This is a conservative initializa-
tion method—more elaborate procedures are likely to lead
to better convergence. Especially starting with a small pro-
portion of the edges and incrementally inserting them to the
simulation is likely to better avoid local minima.

Convergence of the chains was monitored by two kinds of
measures: the two modularities (ordinary and normalized),
and the incomplete data log-likelihood, defined as

log p(~s,~t|~g,~h, β) = K(log Γ(V β)− V log Γ(β))−

−
KX
k=1

"
log Γ(nk + pk + V β)−

VX
l=1

log Γ(nkl + pkl + β)

#
(17)

for the IDBM. This leave-one-out predictive likelihood is
used mainly because it is easy to compute during the simu-
lation by numerically approximating the log Γ function. In
the experiments, it turned out that both of them can in-
dicate the convergence of the chain. The modularities are
applied to the most likely division of the nodes according to
the current status of the chain. In practice, the chain reaches
the stationary state after 100–200 iterations in the case of
smaller graphs, and interestingly after 50–100 iterations for
larger graphs.

4.3 Small networks
We applied the four Bayesian models on selected graphs

of Mark Newman with ground truth available2. The Karate
network originates from a study on the social relations in
a karate club with 34 members that later split. Out of the
78 relations 10 are between the two clusters. The Football
network represents the schedule of American football games
in Division I of colleges in the 2000 season. The 115 vertices
in the graph represent teams, and 613 edges between them

2http://www-personal.umich.edu/~mejn/netdata/

represent regular-season games between the teams they con-
nect. This network also has a known structure of subgroups.
Teams are divided into 12 conferences containing around 8-
12 teams each. Games are more frequent between the mem-
bers of the same conference than between the members of
different conferences. The graph has 219 inter-conference
edges. The Jazz network lists 2432 collaborations of jazz
bands between 1912 and 1940. The 187 nodes of the graph
are jazz groups and two of them are connected if they have
a musician in common. The partitions of the ground truth
are based on the 7 locations where the bands had recorded
(Chicago, New York, etc.). The graph has 1600 inter-cluster
edges. The Polblogs network is connected to the 2004 U.S.
Presidential Election, which was the first Presidential Elec-
tion in the United States in which blogging played an im-
portant role. 19089 hyperlinks between 1222 political blogs
were automatically extracted from a crawl of the front page
of the blogs during the campaign. The nodes of this directed
graph are categorized into the groups of the principally con-
servative and the principally liberal blogs (1688 inter-cluster
edges).

The hyperparameters for highest normalized modularity
or likelihood can be obtained by exhaustive search for all
algorithms. Another approach is to define hyperpriors on
the hyperparameters, and sample them as well. In [2] the
two methods are compared and evaluated, and it is showed
that there is no major difference between the results. There-
fore, for simplicity we used the exhaustive search method.
Preliminary tests had shown that reasonable values for the
IDBM algorithm lie in the range of α = 0.001 . . . 1000 and
β = 0.001 . . . 100. Based on the original papers, these inter-
vals are the same for LDA and ICMc and, by our measure-
ments, for the MMSB α = 0.001 . . . 100 and β = 1 . . . 1000
should be appropriate intervals to search through. In the
cases when the ground truth is available, the number of la-
tent components were set to the real number of clusters.
It turns out that adding some extra components does not
significantly influence the results. On the other hand, dur-
ing the sampling some components may occasionally vanish,
thus the number of clusters in the result may be lower than
the number of latent components.

To compare our results with the ground truth, the VI
distance of the true and the estimated clusters were calcu-
lated in each case. The results were slightly worse when
the parameters were optimized for likelihood than for mod-
ularity. Table 2 shows the latter cases. It seems that the
normalized modularity is a better graph-only measure for
these networks generally, because the optimal results in this
case have a lower VI distance to the real grouping. On the
other hand, in the case of the Jazz network the best result
is given by IDBM when optimized for modularity. Except
for the smallest networks none of the results are perfect.
This might be because of both measures are connected to
the assortative mixing scheme. Nevertheless, without any
additional information about the graph, the only way is to
optimize with respect to the homophilic assumption, and
especially for normalized modularity. It can be seen that
on these networks the IDBM outperforms the other three
methods, since it achieves the smallest VI distances. Still,
the results produced by the ICMC usually have higher mod-
ularity.

It is important to mention that in our experiments, IDBM
is particularly good at estimating the number of inter-cluster



LDA MMSB ICMc IDBM

Q dV I Q dV I Q dV I Q dV I
Karate 0.371 0 0.332 0.847 0.371 0 0.371 0
Football 0.573 0.872 0.374 2.108 0.603 0.794 0.603 0.671

Jazz 0.428 3.531 0.329 4.354 0.434 3.583 0.433 3.327
Polblogs 0.430 0.570 - - 0.430 0.570 0.431 0.576

Q′ dV I Q′ dV I Q′ dV I Q′ dV I
Karate 0.745 0 0.688 0.645 0.745 0 0.745 0
Football 6.440 0.636 4.243 2.108 6.951 0.566 6.922 0.546

Jazz 2.239 4.232 1.992 4.279 1.863 3.881 1.975 3.911
Polblogs 0.868 0.608 - - 0.868 0.570 0.868 0.549

Table 2: The highest modularities and the corresponding VI distances of the results with each algorithm. On
the top we optimize for modularity (Q) while on the bottom for normalized modularity (Q’) and show the
VI distance for the modularity based optimum.

edges. In the three larger cases they were around 200, 730
and 1290, while the ICMc and the LDA usually achieved by
20-40 edges less. The number of inter-cluster edges in the
case of the MMSB were higher but this was at the expense
of poor estimation of the true clusters compared to the other
three methods.

4.4 Artificial graphs that are difficult to clus-
ter

It has recently turned out that classical spectral cluster-
ing methods usually fail on real social networks [11]. This
is mainly due to some special structural properties of such
graphs like the presence of tightly knit communities and
long tentacles around a big core. Kurucz et al. proposed a
modification of spectral clustering with heuristical redistri-
bution and vertex contraction steps [10]. We compared the
LDA, ICMc and IDBM to this advanced spectral clustering
algorithm involving several heuristics.

An artificial scale-free network of 9983 nodes and 28051
edges was created according to a power-law small-world model,
defined as follows [9]. The starting point is the small world
graph model with nodes placed over a 2D grid. Next, ge-
ographically dense regions over the grid are generated by
assigning density to each node according to a power law dis-
tribution with exponent -1.33. Finally, nodes are connected
with probability inversely proportional to their squared Eu-
clidean distance. In this model for each vertex a number t
by a power law distribution with exponent -1.33 is generated
and t edges are added independent with probability.

Graphs generated with this model are hard to partition
with the classical spectral methods. We compared the four
Bayesian models to the advanced heuristic spectral cluster-
ing on the generated graph. The number of clusters (top-
ics) were set to 4, and the hyperparameters were optimized
with exhaustive search (SVD was performed in 4 dimension).
The results are summarized in Table 3. It can be seen that
LDA and ICMc produce higher modularities, but SVD and
especially the IDBM are better in terms of normalized mod-
ularity. One reason for this can be that these algorithms
can produce more varied-sized clusters which allows higher
normalized modularity.

4.5 Clustering the web graph
On a Web subgraph, we managed to compared the four

most efficient algorithms in order to investigate their perfor-
mance on larger networks and the analyze the possibility of

Q Q’
SVD + heuristics 0.551 2.516
LDA 0.573 2.339
MMSB - -
ICMc 0.567 2.272
IDBM 0.527 2.582

Table 3: Highest modularities on a difficult-to-
cluster artificial scale-free network.

using them in Web applications. Generally, hypertext anal-
ysis may make use of document terms as well as linkage. We
investigate link-only versions the models. Nonetheless, it is
possible to extend all models including our IDBM by model-
ing the words similarly as proposed in e.g. [14]. The data set
used was the largest connected component from the public
test data of Web Spam Challenge 2007 [4]. This network
consists of 111083 nodes and 1836338 edges. One node rep-
resents a host from the .uk domain and one directed edge
points from one node to another if the first hosts a Web page
having a hyperlink to a page hosted by the second node.

The Open Directory project3 contains human edited cat-
egorization of more than 4 million Web page. From this
database the 14 top level categories were used to label the
nodes of the UK-host graph. If a site contained a page regis-
tered in DMOZ with some top category, then it was labeled
with that category. In case of a conflict a random page of
the site registered in DMOZ was chosen and its site was la-
beled with its top category. In this way category labels for
38415 hosts have been obtained. These labels were used to
analyze the structure of the clusters, but since not all of the
nodes were labeled, the computation of the full VI distance
was not possible.

For such large-scale data sets it is not possible to perform
a full exhaustive search in the three-dimensional parame-
ter space of α, β and K. Based on initial results and the
previous sections we concluded that the clustering of larger
graphs is quite robust with respect to the hyperparameters,
especially to α. Thus, the hyperparameters were selected
from a smaller interval: 0.01 . . . 1. The number of latent
components has been set to K = 2 . . . 20. The modularities
of the clustering produced by IDBM as functions of num-
ber of topics are plotted in Figure 2. It seems that neither

3www.dmoz.org
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Figure 2: Modularity and normalized modularity
of the results produced by IDBM on the UK-host
graph.

of these measures indicate the optimal number of clusters,
because they decrease or increase with the number of top-
ics. As mentioned above, the number of top categories in
the DMOZ directory is 14. We used also K = 14 topics in
the forthcoming test to compare the labels and the clusters.
The SVD was performed in 10 dimensions.

We created two-way contingency tables by considering
hosts for which at least one DMOZ label is available. The
tables have the labels as rows and the estimated groups as
columns. Using these tables, the estimated clusters were
compared to the manually associated labels in the terms
of VI distance. The quality of the divisions produced by
the different methods is shown in Table 4. Interestingly, in
this network the best result is achieved with the generative
models optimized for log-likelihood. On the other hand, the
purely graph based measures differ significantly, while the
VI distance of estimated clusters to the labels is quite sim-
ilar in these cases. For example, although Q and especially
Q′ are the smallest in the case of the SVD, it achieves the
one of the best results. As it seems, the lowest VI distance
is produced by IDBM optimized for log-likelihood. This was
obtained by setting α = 0.1, β = 0.66, and by taking 10–150
samples with a sample lag of 5 iterations. The running time
of the Gibbs sampling was around 10 minutes in this case,
and the likelihood stabilized around −2.4 · 106.

The heat map of the two-way contingency table produced
by the IDBM is plotted in Figure 3. As it can be seen, the
clustering is not able to separate the labels. We observe
that some groups of components strongly correlate with cer-
tain labels. For example, Science, Reference and Health
are basically concentrated on groups A, C, H, while Games,
Shopping, Business and Computer mostly occur in the clus-
ters L, K, I and M. Similarly, the groups E and N cover the

Q dV I Q’ dV I LL dV I
SVD 0.221 4.682 3.654 4.682 - -
LDA 0.255 5.901 11.61 5.825 -1.2e7 4.268
MMSB - - - - - -
ICMc 0.381 5.961 15.22 5.805 -2.5e6 4.927
IDBM 0.241 6.103 7.349 5.972 -2.4e6 4.144

Table 4: The highest modularities, log-likelihoods
and the corresponding VI distances of the results on
the UK host graph with 14 latent topics (clusters).
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Figure 3: Heat map of the contingency table be-
tween the labels and the clusters produced by the
IDBM on the UK host graph.

most of Society, Arts, Kids and News, while Recreation and
component J are also highly correlated. The size of the pre-
dicted clusters ranges from 3000 to 10000. Although the VI
distance of 4.1–5.0 is quite high on the absolute scale, it is
relatively low concerning the number of nodes. One might
argue that the results are still insufficient for the automatic
categorization of web pages, but we might also note that
the categories themselves are overlapping. Indeed, a large
number of Web sites belong to multiple DMOZ categories.
In any case, we believe that the result of the clustering can
serve as a useful information for Web crawlers and Web di-
rectory editors.

5. DISCUSSION AND CONCLUSIONS
We have combined features of earlier probabilistic graph

clustering approaches to a new, simple block model that is
easily applicable to large, sparse networks, especially if esti-
mated with collapsed Gibbs sampling. The new model was
compared to community models and to another block model
on a set of small test networks, as well as to a spectral clus-
tering algorithm on a web host graph of the .uk domain and
on an artificial data set. The results of the web clustering



were measured in terms of manual labeling. This comple-
ments some limited preliminary results of a similar model
already presented in [17].

In order to obtain high quality clusters, we have to care-
fully initialize the sampler and set the hyperparameters.
Better initial mixing may be achieved if the edges are added
to the simulation gradually. Hyperparameters can be esti-
mated as for LDA. Infinite component variants of the model
would be possible by using a hierarchy of Dirichlet priors.

The difference between community and block models is
relatively small. Both type of models assign latent categor-
ical variables to the edges, and the memberships of the ver-
tices in the clusters are computed based on the latent vari-
ables of the edges connecting to node. Community models
assign only one latent variable per edge, while block models
assign two latent variables to each edge. In the latter, the
two variables are bound by an interaction matrix. This in-
teraction matrix is a good parametrization when the graph is
not expected to follow an assortative structure, that is when
it has “bipartite properties”, or communities have complex
interactions that we want to estimate, or that are necessary
to estimate to reveal the community structure. The four
algorithms usually produce similar results on the small net-
works with a very good performance of IDBM in terms of
the VI distance. It has also turned out that modularity is
not the best cost function for clustering in many real-world
graphs. In the case of large graphs and our algorithm, like-
lihood turned out to produce better parameter estimation.
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