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This is an announcement of conjectures and results concerning the generating series of

Euler characteristics of Hilbert schemes of points on surfaceswith simple (Kleinian) sin-

gularities. For a quotient surface C2/GwithG < SL(2,C) a finite subgroup, we conjecture

a formula for this generating series in terms of Lie-theoretic data, which is compatible

with existing results for type A singularities. We announce a proof of our conjecture

for singularities of type D. The generating series in our conjecture can be seen as a

specialized character of the basic representation of the corresponding (extended) affine

Lie algebra; we discuss possible representation-theoretic consequences of this fact. Our

results, respectively conjectures, imply the modularity of the generating function for

surfaces with type A and type D, respectively arbitrary, simple singularities, confirming

predictions of S-duality.

1 Euler Characteristics of Hilbert Schemes of Points

Let X be a quasiprojective variety X over the field C of complex numbers. Let Hilbm
(X)

denote the Hilbert scheme of m points on X , the quasiprojective scheme parametriz-

ing zero-dimensional subschemes of X of length m. Consider the generating series of
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topological Euler characteristics

ZX (q) =
∞∑

m=0

χ
(
Hilbm

(X)
)
qm.

For a smooth variety X , the series ZX (q), as well as various refinements, have been

extensively studied. For a nonsingular curve X = C, we have MacDonald’s result [8]

ZC(q) = (1 − q)−χ(C).

For a nonsingular surface X = S, we have (a specialization of) Göttsche’s formula [5]

ZS(q) =
( ∞∏
m=1

(1 − qm)−1

)χ(S)

. (1)

There are also results for higher-dimensional varieties [1].

For singular varieties X , very little is known about the series ZX (q). For a singu-

lar curve X = C with a finite set {P1, . . . ,Pk} of planar singularities however, we have

the beautiful conjecture of Oblomkov and Shende [14], proved by Maulik [9], which

specializes to the following:

ZC(q) = (1 − q)−χ(C)

k∏
j=1

Z(Pi,C)(q). (2)

Here each Z(Pi,C)(q) is a highly nontrivial local term that can be expressed in terms of the

HOMFLY polynomial of the embedded link of the singularity Pi ∈ C.

2 Simple Surface Singularities

In this announcement, we consider the generating series ZS(q) for X = S a singular

surface with simple (Kleinian, rational double point) singularities. First, we discuss

the local situation. As is well known, locally analytically S is a quotient singularity

S = C2/G�. Here G� < SL(2,C) is a finite subgroup corresponding to an irreducible

simply-laced Dynkin diagram �, the dual graph of the exceptional components in the

minimal resolution of the singularity. There are three possible types: � can be of type

An for n ≥ 1, type Dn for n ≥ 4, and type En for n = 6, 7, 8. The following is our main

conjecture.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2017/13/4152/3061055 by Bodleian Libraries of the U
niversity of O

xford,  adam
gyenge@

gm
ail.com

 on 18 January 2022



4154 Á. Gyenge et al.

Conjecture 2.1. Let C2/G� be a simple singularity associated with the irreducible

simply-laced Dynkin diagram � with n nodes. Let C� be the Cartan matrix correspond-

ing to �, and let h∨ be the (dual) Coxeter number of the corresponding finite-dimensional

Lie algebra. Then

Z
C2/G�

(q) =
( ∞∏
m=1

(1 − qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

ζm1+m2+···+mn(q1/2)m
�·C�·m, (3)

where ζ = exp( 2π i
1+h∨ ). �

Evidence for the conjecture is presented in the following result.

Theorem 2.2. Let S = C2/G� be a simple singularity with � of type An for n ≥ 1 or Dn

for n ≥ 4. Then Conjecture 2.1 holds. �

Proof. For type A, straightforward torus localization leads to a combinatorial series.

This series was determined in closed form by Dijkgraaf and Sułkowski [2] using a

direct method, obtaining formula [2, (10)], which is equivalent to (3) for type A. The

same result, still for type A, was recently re-proved, using wall-crossing in Donaldson–

Thomas theory, by Toda [16]. We give a third, elementary combinatorial argument in

[7, Section 2].

For type D, formula (3) is the main result of [7]. �

Remark 2.3. A priori it is not clear at all (at least to us) that the right hand side of (3)

defines an integer series. We checked numerically that the series has integer coefficients

for � of type E6, E7, and E8 as well to a high power in q. See Section 5 for further discus-

sion. We also note that while Theorem 2.2 covers in some sense “most” of the cases, the

existing proofs are specific to typesA andD and it seemsdifficult to push them through in

type E. �

3 Surfaces with Simple Singularities

Let X = S be a quasiprojective surface which is nonsingular outside a finite number of

simple surface singularities {P1, . . . ,Pk}, with (Pi ∈ S) a singularity locally analytically

isomorphic to (0 ∈ C2/G�i
) for G�i

< SL(2,C) a finite subgroup as above. Let S0 ⊂ S be

the nonsingular part of S.
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Theorem 3.1. The generating function ZS(q) of the Euler characteristics of Hilbert

schemes of points of S has a product decomposition

ZS(q) =
( ∞∏
m=1

(1 − qm)−1

)χ(S0)

·
k∏
j=1

Z(Pi,S)(q). (4)

The local terms can be expressed as

Z(Pi,S)(q) = Z
C2/G�i

(q) (5)

and are given by formula (3) for Pi ∈ S of type A and D, and, assuming Conjecture 2.1,

also of type E. �

Proof. The product decomposition (4), aswell as the equality (5), follow froma standard

argument; we sketch the details. For a point P ∈ S on a quasiprojective surface S, let

Hilbm
P (S) denote the punctual Hilbert scheme of S at P, the Hilbert scheme of length m

subschemes of S set-theoretically supported at the single point P. Then for our surface S,

we have

χ(Hilbm
Pi
(S)) = χ(Hilbm

0 (C2/G�i
)) = χ(Hilbm

(C2/G�i
)).

Here the first equality follows from the analytic isomorphism between (Pi ∈ S) and

(0 ∈ C2/G�i
). The second equality follows from torus localization, using the fact that

each singularity C2/G�i
is weighted homogeneous, admitting a C∗-action fixing only the

origin. On the other hand, we have the decomposition

Hilbm
(S) =

⊔
∑k
i=0mi=m

Hilbm0(S0) ×
k∏
i=1

Hilb
mi
Pi

(S).

Reinterpreting this equality for generating series proves (4)–(5), recalling also (1) for S0.

The last part of the statement is Theorem 2.2. �

Formulae (3)–(5) are our analogue for the case of surfaces with simple singulari-

ties of the Oblomkov–Shende–Maulik formula (2). Note that each C2/G�i
is in particular a

hypersurface singularity, as are planar singularities in the curve case. The main differ-

ence with formula (2) is the fact that (conjecturally, for type E) our local terms Z(Pi,S)(q)

are expressed in terms of Lie-theoretic and not topological data. We leave the ques-

tion whether our local terms have any interpretation of in terms of the topology of the
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(embedded) link of Pi, and whether there are nice formulas for other two-dimensional

hypersurface singularities, for further work.

4 Modularity Results

Our formulae lead to the following new modularity results, extending the results of [16]

for type A.

Corollary 4.1 (S-duality for simple singularities). For typeA and typeD, and, assuming

Conjecture 2.1, for all types, the partition function Z
C2/G�

(q) is, up to a suitable fractional

power of q, the q-expansion of a meromorphic modular form of weight − 1
2 for some

congruence subgroup of SL(2,Z). �

Proof. This follows straight from [16, Proposition 3.2]. �

Corollary 4.2 (S-duality for surfaces with simple singularities). Let S be a quasiprojec-

tive surface with simple singularities of type A and D, or, assuming Conjecture 2.1,

of arbitrary type. Then the generating function ZS(q) is, up to a suitable fractional

power of q, the q-expansion of a meromorphic modular form of weight − χ(S)

2 for some

congruence subgroup of SL(2,Z). �

Proof. Combine Theorem 3.1 and Corollary 4.1. �

5 A Representation of an Affine Lie Algebra

Our formula (3) has a strong representation-theoretic flavour. We discuss the relevant

ideas in this section, and conclude with some speculations.

Let g� be the complex finite dimensional simple Lie algebra of rank n corre-

sponding to the irreducible simply-laced Dynkin diagram � with n nodes. Attached to �

is also an (untwisted) affine Lie algebra g̃�; a slight variant will be more interesting for

us, see for example, [3, Section 6]. Denote by g̃� ⊕ C the Lie algebra that is the direct sum

of the affine Lie algebra g̃� and an infinite Heisenberg algebra heis, with their centres

identified; we may call g̃� ⊕ C the extended affine Lie algebra associated with �.

Let V0 be the basic representation of g̃�, the level-1 representation with highest

weight ω0, the fundamental weight corresponding to the additional node of the affine

Dynkin diagram. Let F be the standard Fock space representation of heis, having central

charge 1. Then V = V0 ⊗ F is a representation of g̃� ⊕ C that we may call the extended

basic representation.
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Example 5.1. For � of type An, we have g� = sln+1, g̃� = s̃ln+1, and g̃� ⊕ C = g̃ln+1. In

this case there is in fact a natural vector space isomorphism V ∼= F with Fock space

itself, see for example, [15, Section 3E]. �

By the Frenkel–Kac theorem [4] there is an isomorphism

V ∼= Fn+1 ⊗ C[Q�],

where (Q�, 〈 〉) is the root lattice corresponding to the root system �. Here, for β ∈ Q�,

Fn+1 ⊗ eβ is the sum of weight subspaces of weight ω0 − (
m+ 〈β,β〉

2

)
δ + β,m ≥ 0, where δ

is the imaginary root. Thus, we can write the character of the representation V as

charV (q0, . . . ,qn) = eω0

(∏
m>0

(1 − qm)−1

)n+1

·
∑

β∈Q�

qβ1
1 · · · · · qβn

n (q1/2)〈β,β〉, (6)

where q = e−δ, and β = (β1, . . . ,βn) ∈ Q� is the expression of an element of the root lattice

Q� in terms of the simple roots.

Remark 5.2. The representation V itself is of course well known to appear in the

equivariant geometry of the pair (C2,G�). Given any finite-dimensional representation

ρ ∈ Rep(G�), denote by Hilbρ
(C2) the ρ-Hilbert scheme of C2, the scheme representing

G�-equivariant ideals I�C[C2] with C[C2]/I ∼= ρ. These are all Nakajima quiver varieties

for the affine Dynkin diagram associated with � (the McKay quiver of G�). By results of

Nakajima [10, 13], there is in fact an isomorphism of g̃� ⊕ C-representations

V ∼=
⊕

ρ∈Rep(G�)

H ∗(Hilbρ
(C2)),

where the g̃� ⊕ C-action on the right hand side is given by natural correspondences.

Since these varieties have no odd cohomology [12, Section 7], the Euler characteristic

generating series of the right hand side is given precisely by the character (6) of V . �

Comparing formulas (3) and (6), we deduce the following.

Theorem 5.3. For � of type A and D, or, assuming Conjecture 2.1, of arbitrary type, the

generating series Z
C2/G�

(q) is a specialization of the character formula of the extended

basic representation of the associated extended affine Lie algebra g̃� ⊕ C, obtained by

setting qi = exp( 2π i
1+h∨ ) for i = 1, . . . ,n. �
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We remark here that Dijkgraaf and Sułkowski [2] already noticed the fact that (3)

for type A is a specialized character formula for s̃ln+1.

We do not know whether (3) itself is a character formula for a Lie algebra,

but this appears plausible. Such a result would of course imply in particular that

its coefficients are (positive) integers. It would also suggest that suitable cohomology

groups ⊕mH ∗(Hilbm
(C2/G�)), and indeed ⊕mH ∗(Hilbm

(S)) for S a surface with sim-

ple singularities, would carry actions of interesting Lie algebras, generalizing the

Heisenberg algebra actions of Grojnowski and Nakajima [6, 11] when S is a smooth

surface.

In a different direction, onemay alsowonder about a higher-rank generalization.

Our current discussion involves Hilbert schemes, parametrizing rank r = 1 sheaves on

the singular surface. In the relationship between the instantons on algebraic surfaces

and affine Lie algebras, level equals rank [6]. Indeed the extended basic representation

V has level l = 1. Thus the substitution above is by the root of unity ζ = exp( 2π i
l+h∨ ).

In higher rank, one may wonder whether there are similar formulae involving Euler

characteristics of degenerate versions of the moduli space of rank r = l framed G�-

equivariant vector bundles on P2 on the one hand, and specialized character formulae

of level l representations of affine Lie algebras on the other.

To conclude, we point out that the substitution by the root of unity ζ = exp( 2π i
l+h∨ )

appears elsewhere in representation theory, notably in the Verlinde formula, and in the

Kazhdan–Lusztig equivalence between certain categories of representations of the affine

Lie algebra, respectively of the finite quantum group. We are unaware of any connection

between our work and those circles of ideas.
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