Commutative algebra and algebraic geometry Sheet 2 — Due 07/10

Practice problems (not to hand in)

- 1. Let $X \subset \mathbb{A}^n$ be an arbitrary subset. Prove that $V(I(X)) = \overline{X}$, the closure of X.
- 2. Let k be an infinite field, $C := \{(t, t^3, t^4)\} \subset \mathbb{A}^3_k$. Show that C is an algebraic variety, and determine its vanishing ideal.
- 3. Decide if the following statements are true or false.
 - (a) Let X be a topological space, $Y, Z \subseteq X$ irreducible subspaces. Then $Y \cap Z$ is irreducible as well.
 - (b) The affine variety corresponding to $\mathbb{C}[x, y]/(xy)$ is irreducible.
 - (c) Every open subset of A^2 in the Zariski topology is dense.
 - (d) The affine variety corresponding to $\mathbb{C}[x, y](xy 1)$ is irreducible.

HW problems to hand in

- 1. Let $A = \mathbb{C}[x, y]/(x y^2)$. Find a minimal primary decomposition of the ideal I in A generated by [the image of] x 1, resp., $(x 1)^2$.
- 2. Show that ideal quotients correspond to differences of varieties in the following sense: if X is an affine variety and
 - (a) Y_1 and Y_2 are subvarieties of X then $I(\overline{Y_1 \setminus Y_2}) = (I(Y_1) : I(Y_2))$ in A(X)
 - (b) J_1 and J_2 are radical ideals in A(X) then $\overline{V(J_1) \setminus V(J_2)} = V(J_1 : J_2)$
- 3. Let X be a topological space. Let X_1, \ldots, X_r be any subset of X with $X = X_1 \cup \cdots \cup X_r$. If all X_1, \ldots, X_r are Noetherian, prove that X is Noetherian as well.
- 4. (a) List the open and closed subsets of \mathbb{A}^1 in the Zariski topology.
 - (b) Show that the only irreducible closed algebraic sets of \mathbb{A}^2 are \mathbb{A}^2 , \emptyset , V(x a, y b), and V(f(x, y)) where f(x, y) is an irreducible polynomial.
 - (c) Deduce that the dimension of \mathbb{A}^2 is 2.
 - (d) Describe carefully all the Zariski closed subsets of \mathbb{A}^2 .
 - (e) Show that the Zariski topology on \mathbb{A}^2 is *not* the product topology on $\mathbb{A}^1 \times \mathbb{A}^1$.