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1 Preliminaries
Let R be a commutative ring. If I ⊆ R is an ideal in R, we shall say that I is non trivial if I ̸= R (this
is not entirely standard terminology). The ideal I is principal if it can be generated by one element
as an R-module.

We denote R∗ := R\{0}.
An element r ∈ R is said to be nilpotent if there exists an integer n ≥ 1 such that rn = r · · · r︸ ︷︷ ︸

n-times

= 0.

The ring R is local if it has a single maximal ideal m. Note that in this case, every element of R\m
is a unit (because otherwise, any such element would be contained in a non trivial maximal ideal of
R, which would not coincide with m - see Lemma 2.4 below).

The prime ring of a ring R is the image of the unique ring homomorphism Z → R (which sends
n ∈ Z to the corresponding multiple of 1 ∈ R ).

If R is a ring, a zero-divisor of R is an element r ∈ R such that there exists an element r′ ∈ R\{0}
such that r · r′ = 0. Note that 0 is always a zero-divisor of R.

A domain or (integral domain) is a ring R with the property that the set of zero-divisors of R
consists only of 0 .

A Unique Factorisation Domain (UFD) is a domain R, which has the following property. For any
r ∈ R\{0}, there is a sequence r1, . . . , rk ∈ R (for some k ≥ 1 ), such that

1. all the ri are irreducible;

2. (r) = (r1 · · · rk);

3. if r′1, . . . , r′k′ is another sequence with properties (1) and (2), then k = k′ and there is a permu-
tation σ ∈ Sk st (ri) =

(
r′σ(i)

)
for all i ∈ {1, . . . , k}.
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If R, T are rings, then T is said to be a R-algebra if there is a homomorphism of rings R → T .
Note that this homomorphism is part of the datum of a R-algebra, so that strictly speaking, it is not
T which should be called a R-algebra, but the homomorphism R → T . Note also that a R-algebra
T naturally carries a structure of R-module. If ϕ1 : R → T1 and ϕ2 : R → T2 are two R-algebras, a
homomorphism of R-algebras is a homomorphism of rings λ : T1 → T2 such that λ ◦ ϕ1 = ϕ2.

A R-algebra ϕ : R → T is said to be finitely generated if there exists an integer k ≥ 0 and a
surjective homomorphism of R-algebras R [x1, . . . , xk] → T (where R [x1, . . . , xk] = R if k = 0 ). Note
the following elementary fact: if R → T (resp. T → W ) is a finitely generated R-algebra (resp.
a finitely generated T -algebra), then the composed map R → W makes W into a finitely generated
R-algebra (why?).

If M is an R-module and S ⊆M is a subset of M , we write

Ann(S) := {r ∈ R | rm = 0 for all m ∈ S}

The set AnnM (S) is an ideal of R (check), called the annihilator of S.
If I, J ⊆ R are ideals in R, we shall write

(I : J) := {r ∈ R | rJ ⊆ I}

From the definitions, we see that (I : J) is also an ideal and that ((0) : J) = Ann(J). If x, y ∈ R,
we shall often write (I : x) for (I : (x)), (x : I) for ((x), I) and (x : y) for ((x) : (y)). Note that if M is
another ideal of R, we have (I :M) ∩ (J :M) = (I ∩ J :M) (why?).

Let

· · · →Mi
di−→Mi+1

di+1−−−→ · · ·

be a sequence of R-modules such that di+1 ◦ di = 0 for all i ∈ Z. Such a sequence is called a
complex of R-modules. We shall say that the complex is exact if ker (di+1) = Im (di) for all i ∈ Z.

For the record, we recall the following two basic results:

Theorem 1.1 (Chinese remainder theorem). Let R be a ring and let I1, . . . , Ik be ideals of R. Let

ϕ : R→
k∏

i=1

R/Ii

be the ring homomorphism such that ϕ(r) =
∏k

i=1 (r (modIi)) for all r ∈ R. Then ker(ϕ) = ∩k
i=1Ii.

Furthermore the map ϕ is surjective iff Ii + Ij = R for any i, j ∈ {1, . . . , k} such that i ̸= j, and in
that case, we have ∩k

i=1Ii =
∏k

i=1 Ii.

Proof. See Prop. 10 in AM.

Proposition 1.2 (Euclidean division). Let R be a ring. Let P (x), T (x) ∈ R[x] and suppose that the
leading coefficient of T (x) is a unit of R. Then there exist unique polynomials Q(x), J(x) ∈ R[x] such
that

P (x) = Q(x)T (x) + J(x)

and deg(J(x)) < deg(T (x)) (here we set the degree of the zero polynomial to be −∞ ).

We shall also need the following result from set theory.
A partial order on a set S is a relation ≤ on S, such that

• (reflexivity) s ≤ s for all s ∈ S;

• (transitivity) if s ≤ t and t ≤ r for s, t, r ∈ S then s ≤ r;
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• (antisymmetry) if s ≤ t and t ≤ s for t, s ∈ S then s = t.

If we also have

• (connexity) for all s, t ∈ S, either s ≤ t or t ≤ s

then the relation ≤ is said to be a total order on S.
Let T ⊆ S be a subset and let b ∈ S. We say that b is an upper bound for T if t ≤ b for all t ∈ T .
An element s ∈ S is said to be a maximal element of S if for all t ∈ S, we have s ≤ t iff s = t. An

element s ∈ S is said to be a minimal element of S if for all t ∈ S, we have t ≤ s iff s = t.
Note that if S is partially ordered by the relation ≤ and T ⊆ S is a subset, then the relation ≤

restricts to a partial order on T .

Proposition 1.3 (Zorn’s lemma). Let ≤ be a partial order on a non-empty set S. Suppose that for
every subset T ⊆ S, which is totally ordered (with the restriction of the relation ≤ to T ), there is an
upper bound for T in S. Then there exists a maximal element in S.

Proof. Omitted. See any first course on set theory. Zorn’s lemma is a consequence of the axiom of
choice.

A classical application of Zorn’s lemma is the following.

Lemma 1.4. Let R be a ring. If I ⊆ R be a non trivial ideal. Then there is a maximal ideal M ⊆ R
such that I ⊆M .

Proof. Let S be the set of all non trivial ideals containing I. Endow S with the relation given by
inclusion. If T ⊆ S is a totally ordered subset, then T has the upper bound ∪J∈T J (verify that this is
an ideal containing I; it is non trivial because otherwise we would have 1 ∈ J for some J ∈ T ). Hence,
by Zorn’s lemma, there is a maximal element M in S. By definition, the ideal M has the property
that whenever J is a non trivial ideal containing I and M ⊆ J , then M = J . If J is an ideal of R,
which does not contain I, then we cannot have M ⊆ J (since M contains I ). We conclude that for
any non trivial ideal J of R, we have M = J if M ⊆ J . In other words, M is a maximal ideal of R,
which contains I.

2 The nilradical and the Jacobson radical
Definition 2.1. Let R be a ring. The nilradical of R is the set of nilpotent elements of R.

A ring R is called reduced if its nilradical is {0}.
The nilradical captures the "infinitesimal part" of a ring. In the classical algebraic geometry of

varieties, the coordinate rings were always assumed to be reduced, and nilradicals did not play a role.
Part of the strength of scheme theory is that it allows the presence of infinitesimal phenomena.

Proposition 2.2. Let R be a ring. The nilradical of R is the intersection of all the prime ideals of R.

Proof. Suppose that f ∈ R is a nilpotent element. Let p ⊆ R be a prime ideal. Some power of f is 0 ,
which is an element of p. In particular, f(modp) ∈ A/p is a zero-divisor. Since p is a prime ideal, the
ring A/p is a domain and so f(modp) = 0(modp). In other words, f ∈ p. We conclude that f is in
the intersection of all the prime ideals of R.

Conversely, suppose that f ∈ R is not nilpotent. Let Σ be the set of non trivial ideals I of R, such
that for all n ≥ 1 we have fn /∈ I. The set Σ is non-empty, since (0) ∈ Σ. If we endow this set with
the relation of inclusion, we may conclude from Zorn’s lemma that Σ contains a maximal element M
(verify that the assumptions of Zorn’s lemma are verified). We claim that M is a prime ideal.

To prove this, suppose that x, y ∈ R and that x, y /∈ M . Note that the ideal (x) +M strictly
contains M and hence cannot belong to Σ (by the maximality property of M ). Similarly, the ideal
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(y) +M strictly contains M and hence cannot belong to Σ. Hence there are integers nx, ny ≥ 1 such
that fnx ∈ (x) +M and fny ∈ (y) +M . In other words, fnx = a1x+m1, where a1 ∈ R and m1 ∈M
and fny = a2y +m2, where a2 ∈ R and m2 ∈M . Thus

fnx+ny = a1a2xy +m3

where m3 ∈M . We thus see that xy /∈M , for otherwise we would have fnx+ny ∈M , which is not
possible since M ∈ Σ. Since x, y ∈ R were arbitrary, we conclude that M is a prime ideal.

Since M ∈ Σ, for all n ≥ 1 we have fn /∈ M . In particular we have f /∈ M . In other words, we
have exhibited a prime ideal in R, which does not contain f . In particular, f does not lies in the
intersection of all the prime ideals of R.

Corollary 2.3. Let R be a ring. The nilradical of R is an ideal.

Note that this corollary can also easily be proven directly (without using Proposition 2.2) (exercise).
Example 2.4. The nilradical of a domain is the zero ideal. The nilradical of C[x]/ (xn) is (x).

Let I ⊆ R be an ideal. Let q : R → R/I be the quotient map and let N be the nilradical of R/I.
The radical r(I) of I is defined to be q−1(N ). From the definitions, we see that the nilradical of R
coincides with the radical r((0)) of the 0 ideal. Abusing language, we will sometimes write r(R) for
the nilradical of R. Again from the definitions and from Proposition 2.2, we see that the radical of I
has the two equivalent descriptions:

• it is the set of elements f ∈ R such that there exists an integer n ≥ 1 such that fn ∈ I;

• it is the intersection of the prime ideals of R, which contain I.

Notice the following elementary properties of the operator r(•). Let I, J be a ideals of R. Then we
have r(r(I)) = r(I) and we have r(I ∩ J) = r(I) ∩ r(J) (why?).

An ideal, which coincides with its own radical is called a radical ideal.

Definition 2.5. Let R be a ring. The Jacobson radical of R is the intersection of all the maximal
ideals of R.

By definition, the Jacobson radical of R contains the nilradical of R.
Let I ⊆ R be a non trivial ideal. Let q : R→ R/I be the quotient map and let J be the Jacobson

radical of R/I. The Jacobson radical of I is defined to be q−1(J ). By definition, this coincides with
the intersection of all the maximal ideals containing I. Again by definition, the Jacobson radical of I
contains the radical of I.

Proposition 2.6 (Nakayama’s lemma). Let R be a ring. Let M be a finitely generated R-module. Let
I be an ideal of R, which is contained in the Jacobson radical of R. Suppose that IM = M (ie every
m ∈M is a finite sum of elements of the form a · n, where a ∈ I and n ∈M). Then M ≃ (0).

Proof. Suppose for contradiction that M ̸= (0). Let x1, . . . , xs be a set of generators of M and suppose
that s is minimal (ie every set of generators for M has at least s elements). By assumption, there are
elements a1, . . . , as ∈ I such that

xs = a1x1 + · · ·+ asxs

so that (1− as)xs lies in the submodule M ′ generated by x1, . . . , xs−1. Here we set x0 := 0 if
s = 1. Now the element 1−as is a unit. Indeed, if 1−as were not a unit then it would be contained in
a maximal ideal m of R (apply Lemma 2.4) and by assumption as ∈ m so that we would have 1 ∈ m,
which is contradiction. Hence

xs =
(
(1− as)

−1
a1

)
x1 + · · ·+

(
(1− as)

−1
as−1

)
xs−1 (1)

If s = 1 then we see from (1) that xs = 0. This is a contradiction, since M ̸= (0). Thus either
M ≃ (0) or s > 1. If s > 1 we again see from (1) that M has s − 1 generators, which is also a
contradiction. Hence M ≃ (0).
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3 Localisation
Let R be a ring. A subset S ⊆ R is said to be a multiplicatively closed set if 1 ∈ S and if xy ∈ S
whenever x, y ∈ S. A basic example of a multiplicatively closed set is the set

{
1, f, f2, f3, . . .

}
, where

f ∈ R.
Let S ⊆ R be a multiplicatively closed subset. Consider the set R × S (cartesian product). We

define a relation ∼ on R×S as follows. If (a, s), (b, t) ∈ R×S then (a, s) ∼ (b, t) iff there exists u ∈ S
such that u(ta− sb) = 0. The relation ∼ is an equivalence relation (verify) and we define S−1R to be
(R× S)/ ∼, ie S−1R is the set of equivalence classes of R× S under ∼. If a ∈ R and s ∈ S, we write
a/s for the image of (a, s) in S−1R. We define a map + : S−1R× S−1R→ S−1R by the rule

(a/s, b/t) 7→ (at+ bs)/(st)

This is well-defined (verify). We also define a map · : S−1R× S−1R→ S−1R by the rule

(a/s, b/t) 7→ (ab)/(ts)

Again this is well-defined. One checks that these two maps provide S−1R with the structure of a
commutative unitary ring, whose identity element is 1/1. Here + give the addition in the ring and
· gives the multiplication. The 0 element in S−1R is then the element 0/1. There is natural ring
homomorphism from R to RS , given by the formula r 7→ r/1. By construction, if r ∈ S, the element
r/1 is invertible in R, with inverse 1/r.

We shall see in Lemma-Definition 5.1 below that S−1R is the "minimal extension" of R making
every element of S invertible.

Note that if R is a domain, the fraction field of R is the ring RR\0. Note also that if R is a domain
and 0 /∈ S, then S−1R is a domain. Indeed suppose that R is domain and that (a/s)(b/t) = 0, where
a, b ∈ R and s, t ∈ S. Then by definition we have u(ab) = 0 for some u ∈ S, which implies that ab = 0
so that either a = 0 or b = 0, in particular either a/s = 0/1 or b/t = 0/1.

Note also that if 0 ∈ S, then S−1R is the zero ring (ie 1 = 0 in S−1R. This simply follows from
the fact that in this case 0/1 is a unit in S−1R. More generally, the definition shows that S−1R is the
zero ring iff for all r ∈ R, there is an s ∈ S st sr = 0.

If M is an R-module, we may carry out a similar construction. We define a relation ∼ on M × S
as follows. If (a, s), (b, t) ∈ M × S then (a, s) ∼ (b, t) iff there exists u ∈ S such that u(ta − sb) = 0.
The relation ∼ is again an equivalence relation and we define S−1M to be (M × S)/ ∼, ie S−1M is
the set of equivalence classes of M ×S under ∼. If a ∈M and s ∈ S, we again write a/s for the image
of (a, s) in S−1M . We define a map + : S−1M × S−1M → S−1M by the rule

(a/s, b/t) 7→ (at+ bs/(st)

This is also well-defined. Similarly, we define the map · : S−1R× S−1M → S−1M by the rule

(a/s, b/t) 7→ (ab)/(ts)

Again, this is well-defined. One checks that these two maps provide S−1M with the structure of
a S−1R module. Here + give the addition in the ring and · gives the scalar multiplication. The 0
element in S−1M is then the element 0/1. The S−1R-module S−1M carries a natural structure of
R-module via the natural map R→ S−1R and there a natural map of R-modules M → S−1M , given
by the formula m 7→ m/1.

We shall also use the less cumbersome notation RS for S−1R and MS for S−1M . The ring RS (resp.
the R-module MS ) is called the localisation of the ring R at S (resp. localisation of the R-module M
at S ).

Lemma-Definition 3.1. Let ϕ : R → R′ be a ring homomorphism. Let S ⊆ R be a multiplicatively
closed subset. Suppose that ϕ(S) consists of units of R′. Then there is a unique ring homomorphism
ϕS = S−1ϕ : RS → R′ such that ϕS(r/1) = ϕ(r) for all r ∈ R.
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Proof. Define the map λ : RS → R′ by the formula λ(a/s) = ϕ(a)(ϕ(s))−1 for all a ∈ R and s ∈ S.
We show that λ is well-defined. Suppose that (a, s) ∼ (b, t). Then

λ(b/t) = ϕ(b)(ϕ(t))−1

and we have u(ta − sb) = 0 for some u ∈ S. Thus ϕ(u)(ϕ(t)ϕ(a) − ϕ(s)ϕ(b)) = 0 and since ϕ(u) is a
unit in R′, we have ϕ(t)ϕ(a)− ϕ(s)ϕ(b) = 0. Thus ϕ(t)ϕ(a) = ϕ(s)ϕ(b) and

λ(a/s) = ϕ(a)(ϕ(s))−1 = ϕ(b)(ϕ(t))−1 = λ(b/t)

Thus λ is well-defined. We skip the straightforward verification that λ is a ring homomorphism. We
have thus proven that there is a ring homomorphism ϕS : RS → R′ such that ϕS(r/1) = ϕ(r) for all
r ∈ R (namely λ ). We now prove unicity. Suppose that ϕ′S : RS → R′ is another ring homomorphism
such that ϕ′S(r/1) = ϕ(r) for all r ∈ R. Then for any r ∈ R and t ∈ S, we have

ϕ′S(r/t) = ϕ′S
(
(r/1)(t/1)−1

)
= ϕ′S(r/1)ϕ

′
S(t/1)

−1 = ϕS(r)ϕS(t)
−1 = ϕS(r/t)

and thus ϕ′S coincides with ϕS (and in particular with λ ).

There is a similar result for modules:

Lemma 3.2. Let R be a ring and let S ⊆ R be a multiplicatively closed subset. Let M be a R-module
and suppose for each s ∈ S, the "scalar multiplication by s" map [s]M : M → M is an isomorphism.
Then there is a unique structure of RS-module on M such that (r/1)m = rm for all m ∈M and r ∈ R.

Keeping the notation of the lemma, note that if r/s ∈ RS , we necessarily have (r/s)(m) =
[s]−1

M (rm), where [s]−1
M is the inverse of the map [s]M .

Proof. Left to the reader.

We also record the following important fact.

Lemma 3.3. Let R be a ring and let f ∈ R. Let S =
{
1, f, f2, . . .

}
. Then the ring RS is finitely

generated as a R-algebra.

Proof. Consider the R-algebra T := R[x]/(fx − 1). Note that T is a finitely generated R-algebra by
definition. Let ϕ : R[x] → RS by the homomorphism of R-algebras such that ϕ(x) = 1/f . Note that
ϕ(fx− 1) = 0 and hence ϕ induces a homomorphism of R-algebras ψ : T → RS . Now since the image
of f in T is invertible by construction, there is by Lemma 3.1 a unique homomorphism of R-algebras
λ : RS → T . We have ψ ◦ λ = IdT by unicity and hence λ is injective. On the other hand λ is
surjective, since the image of λ contains 1/(f(mod(fx − 1))) = x(mod(fx − 1)), which generates R
as an R-algebra. Thus λ is bijective, and hence an isomorphism of R-algebras.

In view of Lemma 3.2, if R is a ring and ϕ : N → M is a homomorphism of R-modules, there is
a unique homomorphism of RS-modules ϕS : NS → MS such that ϕ(n/1) = ϕ(n)/1 for all n ∈ N .
We verify on the definitions that if ψ :M → T is another homomorphism of R-modules then we have
(ψ ◦ ϕ)S = ψS ◦ ϕS .

Lemma 3.4. Let R be a ring and let S ⊆ R be a multiplicatively closed subset. Let

· · · →Mi
di−→Mi+1

di+1−−−→ · · ·

be an exact complex of R-modules. Then the sequence

· · · →Mi,S
di,S−−→Mi+1,S

di+1,S−−−−→ · · ·

is also exact.
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Proof. Let m/s ∈Mi,S (with m ∈Mi and s ∈ S ) and suppose that di,S(m/s) = (1/s)di,S(m/1) = 0.
Then di,S(m/1) = di(m)/1 = 0 so that there is a u ∈ S, such that u · di(m) = di(um) = 0. Now by
assumption there is an element p ∈Mi−1 such that di−1(p) = um. Then we have di−1,S(p/(us)) = m/s.
This concludes the proof.

Lemma 3.5. Let ϕ : R → T be a ring homomorphism. Let S ⊆ R be a multiplicatively closed
subset. By Lemma-Definition 3.1 there is a unique homomorphism of rings ϕ′ : RS → Tϕ(S) such that
ϕ′(r/1) = ϕ(r)/1. We may thus view Tϕ(S) ( resp. T ) as a RS-modules (resp. as a R-module). There
is then a unique isomorphism of RS-modules µ : TS ≃ Tϕ(S) such that µ(a/1) = a/1 for all a ∈ T and
we have µ ◦ ϕS = ϕ′.

Proof. Define µ(a/s) := a/ϕ(s) for any a ∈ T and s ∈ S. This is well-defined. Indeed, suppose that
a/s = b/t. Then there is u ∈ S such that ϕ(u)(ϕ(t)a − ϕ(s)b) = 0, ie ϕ(u)ϕ(t)a = ϕ(u)ϕ(s)b. We
thus see that a/ϕ(s) = b/ϕ(t), which shows that µ is well-defined. From the definitions, we see that
µ is a map of RS-modules. We also see from the definition that µ is surjective. To see that µ is
injective, suppose that µ(a/s) = 0/1 for some a ∈ T and s ∈ S. Then there is a u ∈ ϕ(S) such that
ua = 0. Hence a/1 = 0 in TS and thus a/s = 0. Thus µ is bijective. The identity µ ◦ ϕS = ϕ′

follows from the fact that µ, ϕS and ϕ′ are homomorphisms of RS-modules and from the fact that
µ ◦ ϕS(1) = ϕ′(1/1).

Let R be a ring and let p be a prime ideal in R. Then the set R\p is a multiplicatively closed
subset. Indeed, 1 /∈ p for otherwise p would be equal to R and if x, y /∈ p then xy /∈ p, for otherwise
either x or y would lie in p. We shall use the shorthand Rp for RR\p and if M is a R-module, we shall
use the shorthand Mp for MR\p. If ϕ : M → N is a homomorphism of R-modules, we shall write ϕp
for ϕR\p :Mp → Np.

If ϕ : U → R is a homomorphism of rings and p is a prime ideal of R, then ϕ naturally induces a
homomorphism of rings Uϕ−1(p) → Rp, since ϕ

(
U\ϕ−1(p)

)
⊆ R\p. This homomorphism is sometimes

also denoted ϕp.

Lemma 3.6. Let R be a ring and let S ⊆ R be a multiplicatively closed subset. Let λ : R → RS be
the natural ring homomorphism. Then the prime ideals of RS are in one-to-one correspondence with
the prime ideals p of R such that p∩S = ∅. If q is a prime ideal of RS then the corresponding ideal of
R is λ−1(q). If p is a prime ideal of R such that p ∩ S = ∅ then the corresponding prime ideal of RS

is ιp,S (pS) ⊆ RS, where ιp : p → R is the inclusion map (which is a homomorphism of R-modules).
Furthermore, ιp,S (pS) is then the ideal generated by λ(p) in RS.

Note that in view of Lemma 3.5, if we localise R at S when R is viewed as a R-module or as a ring,
we get the same RS-module.

Proof. We first prove that if p is any ideal of R, then ιp,S (pS) is the ideal generated by λ(p) in RS .
For this, notice that by definition ιp,S (pS) consists of all the element a/s ∈ RS , where a ∈ p and
s ∈ S. Hence ιp,S (pS) is an ideal of RS , which contains λ(p). Furthermore, since a/s = (a/1)(1/s),
any element a/s as above is contained in the ideal generated by λ(p) in RS . Hence ιp,S (pS) is the
ideal generated by λ(p) in RS .

To prove the lemma, we thus only have to show the following

(i) If q is a non trivial ideal of RS then λ−1(q) ∩ S = ∅.

(ii) If q is an ideal of RS , the ideal generated by λ
(
λ−1(q)

)
in RS is q.

(iii) If p is a prime ideal of R such that p ∩ S = ∅, then λ−1 (ιp,S (pS)) = p.

(iv) If p is a prime ideal of R such that p ∩ S = ∅ then ιp,S (pS) is a prime ideal of RS .

(v) If q is a prime ideal of RS then λ−1(q) is a prime ideal.
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We skip the proof of (v).
We prove (i). If λ−1(q) ∩ S ̸= ∅ then (by definition) there exists s ∈ λ−1(q) such that s ∈ S. But

then λ(s) = s/1 ∈ q and s/1 is a unit, so that q is trivial. This proves (i).
To prove (ii), notice first that λ

(
λ−1(q)

)
⊆ q. Furthermore, if a/s ∈ q then as before a/1 =

(a/s)(s/1) also lies in q and hence a ∈ λ
(
λ−1(q)

)
. Since a/s = (a/1)(1/s) we thus see that a/s lies in

the ideal generated by λ
(
λ−1(q)

)
. Since a/s was arbitrary, q is thus the ideal generated by λ

(
λ−1(q)

)
.

To prove (iii) note that since ιp,S (pS) is the ideal generated by λ(p) in RS , we clearly have
λ−1 (ιp,S (pS)) ⊇ p. Now suppose that a ∈ λ−1 (ιp,S (pS)). Then by definition a/1 = b/s for some
b ∈ p and some s ∈ S. Again by definition, this means that for some t ∈ S, we have t(sa− b) = 0, ie
tsa = tb. Since tb ∈ p and ts /∈ p (by assumption), we deduce from the fact that p is prime that a ∈ p,
as required.

To prove (iv), consider the exact sequence of R-modules

0 → p → R
q−→ R/p → 0

where q is the quotient map. Applying Lemma 3.4 we see that the sequence of RS-modules

0 → pS → RS
qS−→ (R/p)S → 0

is also exact. Furthermore, by Lemma 3.5, we see that (R/p)S is isomorphic as a RS-module with the
ring (R/p)q(S) and that we have an isomorphism of rings RS/pS ≃ (R/p)q(S). Now since S ∩ p = ∅, we
see that 0 /∈ q(S). Since R/p is a domain by assumption, we deduce that (R/p)q(S) is also a domain
(see beginning of this section). We conclude that pS is a prime ideal.

Lemma 3.7. Let R be a ring and let p ⊆ R be a prime ideal. Then the ring Rp is a local ring. If m
is the maximal ideal of Rp and λ : R→ Rp is the natural homomorphism of rings, then λ−1(m) = p.

Proof. By Lemma 3.6 the prime ideals of Rp correspond to the prime ideals of R which do not meet
R\p, ie to the prime ideals of R which are contained in p. This correspondence preserves the inclusion
relation,
so every prime ideal of Rp is contained in the prime ideal corresponding to p. Now let I be a maximal
ideal of Rp. Since I is contained in the prime ideal corresponding to p, it must coincide with this ideal
by maximality. So the prime ideal m corresponding to p is maximal and it is the only maximal ideal
of Rp. By Lemma 3.6, we have λ−1(m) = p.

Lemma 3.8. Let R be a ring. Let

· · · →Mi
di−→Mi+1

di+1−−−→ · · · (4)

be a complex of R-modules. Then the complex (4) is exact iff the complex

· · · →Mi,p
di,p−−→Mi+1,p

di+1,p−−−−→ · · · (5)

is exact for all the maximal ideals p of R.

Proof. ” ⇒ ” By Lemma 3.4.
” ⇐ ": Suppose that the complex (4) is not exact. Then ker (di+1) / Im (di) ̸= 0 for some i ∈ Z.

By Lemma 3.4, there is a natural isomorphism

(ker (di+1) / Im (di))p ≃ ker (di+1)p / Im (di)p

for all the prime ideals p in R. In particular, if (ker (di+1) / Im (di))p ̸= 0 for some prime ideal p,
then the complex (5) is not exact for that choice of prime ideal.

Now since ker (di+1) / Im (di) ̸= 0, we see that there is an element a ∈ ker (di+1) / Im (di) such that
Ann(a) ̸= R (any non zero element of ker (di+1) / Im (di) will do). Let p be a maximal ideal of R,
which contains Ann(a) (this exists by Lemma 1.4). Then (ker (di+1) / Im (di))p ̸= 0 for otherwise there
would be an element u ∈ R\p ⊆ R\Ann(a) such that ua = 0, which is a contradiction. Thus the
complex (5) is not exact.
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4 Primary decomposition
In this section, we study a generalisation of the decomposition of integers into products of prime num-
bers. In a geometric context (ie for affine varieties over algebraically closed fields) this generalisation
also provides the classical decomposition of a subvariety into a disjoint union of irreducible subvarieties.
Applied to the ring of polynomials in one variable over a field, it yields the decomposition of a monic
polynomial into a product of irreducible monic polynomials.

The main result is Theorem 4.9 below.

Proposition 4.1. Let R be a ring.

(i) Let p1, . . . , pk be prime ideals of R. Let I be an ideal of R. Suppose that I ⊆ ∪k
i=1pi. Then there

is i0 ∈ {1, . . . , k} such that I ⊆ pi0 .

(ii) Let I1, . . . , Ik be ideals of R and let p be a prime ideal of R. Suppose that p ⊇ ∩k
i=1Ii. Then

there is i0 ∈ {1, . . . , k} such that p ⊇ Ii0 . If p = ∩k
i=1Ii, then there is a i0 ∈ {1, . . . , k} such that

p = Ii0 .

Proof. (i) By induction on k. The case k = 1 holds tautologically. Suppose for contradiction that the
conclusion does not hold. By the inductive hypothesis, we see that for each i ∈ {1, . . . , k}, we have
I ⊈ ∪j ̸=ipi. In other words, there are elements x1, . . . , xk ∈ I such that for each i ∈ {1, . . . , k} we have
xi ∈ pi and xi /∈ pj if j ̸= i. Now consider the element

y :=

k∑
i=1

x1x2 · · ·xi−1xi+1 · · ·xk

where we set x0 = xk+1 = 1. Note that for each i ∈ {1, . . . , k} we have x1x2 · · ·xi−1xi+1 · · ·xk ∈ pj for
all j ̸= i. Now let i ∈ {1, . . . , k} be such that y ∈ pi. Then y − x1x2 · · ·xi−1xi+1 · · ·xk ∈ pi and thus

x1x2 · · ·xi−1xi+1 · · ·xk ∈ pi

Now, since pi is prime, one of x1, x2, . . . , xi−1, xi+1, . . . , xk must lie in pi, which is a contradiction.
(ii) We first prove the first statement. Suppose that the conclusion does not hold. Then for each

i ∈ {1, . . . , k}, there is an element xi ∈ Ii such that xi /∈ p. But x1x2 · · ·xk ∈ ∩k
i=1Ii ⊆ p and since p

is prime, one of the xi must lie in p, which is a contradiction.
The second statement follows from the first, since ∩k

i=1Ii ⊆ Ii0 .

Remark 4.2. The proof of Proposition 4.1 shows that in (i), the condition that the ideals pi are prime
is superfluous if k ≤ 2.

Definition 4.3. An ideal I of R is primary if it is non trivial and all the zero-divisors of R/I are
nilpotent.

In other words, I is primary if the following holds: if xy ∈ I and x, y /∈ I then xl ∈ I and yn ∈ I
for some l, n > 1 (in other words, x, y ∈ r(I) ). From the definition, we see that every prime ideal is
primary.

Example 4.4. The ideals (pn) of Z are primary if p is prime and n > 0.

Lemma 4.5. Suppose that I is a primary ideal of R. Then r(I) is a prime ideal.

Proof. Let x, y ∈ R and suppose that xy ∈ r(I). Then there is n > 0 such that xnyn ∈ I and thus
either xn ∈ I, or yn ∈ I, or xln ∈ I and ynk ∈ I for some l, k > 1. Hence either x or y lies in r(I).

The previous Lemma justifies the following terminology.
If p is a prime ideal and I is a primary ideal, we say that I is p-primary if r(I) = p.
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Lemma 4.6. Let J be an ideal of R. Suppose that r(J) is a maximal ideal. Then J is primary.

Proof. From the assumptions, we see that the nilradical r(R/J) of R/J is maximal. Hence R/J is
a local ring, because any maximal ideal of R/J contains r(R/J) by Proposition 3.2 and hence must
coincide with it. Hence any element of R/J is either a unit or is nilpotent. In particular, all the zero
divisors of R/J are nilpotent, in particular J is primary.

From the previous Lemma, we see that powers of maximal ideals are primary ideals.

Lemma 4.7. Let p be a prime ideal and let I be a p-primary ideal. Let x ∈ R.

(i) If x ∈ I then (I : x) = R.

(ii) If x /∈ I then r(I : x) = p.

(iii) If x /∈ p then (I : x) = I.

Proof. (i) and (iii) follow directly from the definitions. We prove (ii). Suppose that y ∈ r(I : x). By
definition, this means that for some n > 0, we have xyn ∈ I. As x /∈ I, we see that yln ∈ I for
some l > 0 so that y ∈ r(I) = p. Hence r(I : x) ⊆ p. Now consider that we have I ⊆ r(I : x) ⊆ p.
Applying the operator r(•), we see that we have r(I) = p ⊆ r(r(I : x)) = r(I : x) ⊆ r(p) = p so that
r(I : x) = p.

Lemma 4.8. Let p be a prime ideal and let q1 . . . , qk be p-primary ideals. Then q := ∩k
i=1qi is also

p-primary.

Proof. We compute
r(q) = ∩k

i=1r (qi) = p

In particular, q is p-primary if it is primary. We verify that q is primary. Suppose that xy ∈ q and that
x, y /∈ q. Then then there are i, j ∈ {1 . . . , k} such that x /∈ qi and y /∈ qj . Hence there are l, t > 0 such
yl ∈ qi and xt ∈ qj . In other words, x, y ∈ r (qi) = r (qj) = p = r(q). In other words, q is primary.

We shall say that an ideal I of R is decomposable if there exists a sequence q1 . . . , qk of primary
ideals in R such that I = ∩k

i=1qi. Such a sequence is called a primary decomposition of I. A primary
decomposition as above is called minimal if

(a) all the r (qi) are distinct;

(b) for all i ∈ {1, . . . , k} we have qi ⊉ ∩j ̸=iqj .

Note that any primary decomposition can be reduced to a minimal primary decomposition in the
following way:

• first use Lemma 4.8 to replace the sets of primary ideals with the same radical by their intersec-
tion; then (a) is achieved;

• then successively throw away any primary ideal violating (b).

In general, not all ideals are decomposable. We shall see in section 7 below that all ideals are
decomposable if R is noetherian.

The following theorem examines what part of primary decompositions are unique.

Theorem 4.9. Let I be a decomposable ideal. Let q1 . . . , qk be primary ideals and let I = ∩k
i=1qi be a

minimal primary decomposition of I. Let pi := r (qi) (so that pi is a prime ideal). Then the following
two sets of prime ideals coincide

• the set {pi}i∈{1,...,k}
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• the ideals among the ideals of the type r(I : x) (where x ∈ R ), which are prime.

Proof. Let x ∈ R. Note that (I : x) = ∩k
i=1 (qi : x) and r(I : x) = ∩k

i=1r (qi : x). Hence by
Lemma 4.8, we have r(I : x) = ∩i,x/∈qi

pi.
Now suppose that r(I : x) is a prime ideal. Then r(I : x) = pi0 for some i0 ∈ {1, . . . , k} by

Proposition 4.1. Conversely, note that for any i0 ∈ {1, . . . , k}, there exists an x ∈ R, such that x /∈ qi0
and such that x ∈ qi for all i ̸= i0. This follows from the minimality of the decomposition. For such
an x, we have r(I : x) = pi0 by the above.

As a consequence of Theorem 4.9 , we can associate with any decomposable ideal I in R a uniquely
defined set of prime ideals. These prime ideals are said to be associated with I. Note that the intersec-
tion of these prime ideals is the ideal r(I). Another consequence is that any radical decomposable ideal
has a minimal primary decomposition by prime ideals (so that in this case, the associated primes are
the elements of the minimal primary decomposition itself). Furthermore, any two minimal primary
decompositions by prime ideals of a radical ideal coincide.

Remark 4.10. One can show that any minimal primary decomposition of a radical ideal consists only
of prime ideals (without requiring a priori that the primary decomposition consist of prime ideals, as
in the previous paragraph). This is called the ’2nd uniqueness theorem’. In particular, a decomposable
radical ideal has a unique primary decomposition. We do not prove this in these notes however.

Example 4.11. 1. If n = ±pn1
1 · · · pnk

k ∈ Z, where the pi are distinct prime numbers, a primary
decomposition of (n) is given by

(n) = ∩k
i=1 (p

ni)

(apply the Chinese Remainder Theorem). The set of prime ideals associated to this decomposition
is of course {(p1) , . . . , (pk)}.

2. A more complex example is the ideal
(
x2, xy

)
⊆ C[x, y]. Here(

x2, xy
)
= (x) ∩ (x, y)2

is a primary decomposition and the associated set of prime ideals is {(x), (x, y)}. To see that
we indeed have

(
x2, xy

)
= (x) ∩ (x, y)2 note that by construction, the ideal (x, y)2 consists of

the polynomials of the form x2P (x, y) + xyQ(x, y) + y2T (x, y). Thus (x)∩ (x, y)2 consists of the
polynomials x2P (x, y) + xyQ(x, y) + y2T (x, y) such that T (x, y) is divisible by x. Hence (x) ∩
(x, y)2 ⊆

(
x2, xy

)
and clearly we also have

(
x2, xy

)
⊆ (x)∩(x, y)2 so that

(
x2, xy

)
= (x)∩(x, y)2.

To see that the decomposition is primary, note that C[x, y]/(x) ≃ C[y] and C[x, y]/(x, y) ≃ C.
Thus (x) is prime and (hence primary) and (x, y) is maximal, so that (x, y)2 is primary by
Lemma 4.6.

Lemma 4.12. Let I be a decomposable ideal. Let S be the set of prime ideals associated with some
(and hence any) minimal primary decomposition of I. Let I be the set of all the prime ideals of R,
which contain I. View S (resp. I ) as partially ordered by the inclusion relation. Then the minimal
elements of S coincide with the minimal elements of I.

Proof. Clearly the minimal elements of I are also minimal elements of S. We only have to show that
the minimal elements of S are also minimal in I. Let Smin ⊆ S (resp. Imin ⊆ I ) be the set of
minimal elements of S (resp. I ). Note first that by Theorem 4.9, we have r(I) = ∩p∈Sp and thus we
also have r(I) = ∩p∈Smin p. Now let p0 ∈ Smin . Suppose for contradiction that p0 /∈ Imin. Then there
exists an element p′0 ∈ I such that p′0 ⊊ p0. On the other hand, we have p′0 ⊇ I, so that p′0 ⊇ p for
some p ∈ Smin by Proposition 4.1. We conclude that p0 ⊋ p, which contradicts the minimality of p0.
Thus Smin = Imin .

The elements of Smin are called the isolated or minimal prime ideals associated with I whereas
the elements of S\Smin are called the embedded prime ideals associated with I. This terminology is
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justified by algebraic geometry. According to the last lemma, the isolated prime ideals associate with
I are precisely the prime ideals, which are minimal among all the prime ideals containing I.

In Example 4.11 (2), the set Smin consists only of (x).
Note also the following important facts:

• if I is a decomposable radical ideal, then all the associated primes of I (which coincide with the
elements of the unique minimal primary decomposition - see above) are isolated. This simply
follows from the fact that I has a minimal primary decomposition by prime ideals.

• if I is a decomposable ideal, there are only finitely many prime ideals, which contain I and are
minimal among all the prime ideals containing I. These prime ideals are also the isolated ideals
associated with I.

We also record the following lemma, which makes no assumption of decomposability.

Lemma 4.13. Let R be a ring. Let I ⊆ R be an ideal. Then there are prime ideals, which are minimal
among all the prime ideals containing I. Furthermore, if p ⊇ I is a prime ideal, then p contains such
a prime ideal.

Proof. Exercise.

5 Noetherian rings
Let R be a ring. We say that R is noetherian if every ideal of R is finitely generated. In other words,
if I ⊆ R is an ideal of R, then there are elements r1, . . . , rk such that I = (r1, . . . , rk).

Example 5.1. Fields and PIDs are noetherian (why?). In particular, Z and C are noetherian, and so
is K[x], for any field K.

We shall see that "most" rings that one encounters are noetherian. In fact any finitely generated
algebra over a noetherian ring is noetherian (see below).

We begin with some generalities.

Lemma 5.2. The ring R is noetherian iff whenever I1 ⊆ I2 ⊆ . . . is an ascending sequence of ideals,
there exists a k ≥ 1 such that Ik = Ik+i = ∪∞

t=1It for all i ≥ 0.

Proof. " ⇒ ". Suppose first that R is noetherian. Let I1 ⊆ I2 ⊆ . . . be an ascending sequence of ideals.
The set ∪∞

t=1It is clearly an ideal (verify) and it is finitely generated by assumption. A given finite set
of generators for ∪∞

t=1It lies in Ik for some k ≥ 1. The conclusion follows.
" ⇐ ". Conversely, suppose that whenever I1 ⊆ I2 ⊆ . . . is an ascending sequence of ideals, there

exists a k ≥ 1 such that Ik = Ik+i = ∪∞
t=1It for all i ≥ 0. Let J ⊆ R be an ideal. We need to

show that J is finitely generated. For contradiction, suppose that J is not finitely generated. Define
a sequence r1, r2 · · · ∈ J by the following inductive procedure. Let r1 ∈ J be arbitrary. Suppose that
r1, . . . , ri ∈ J is given and let ri+1 ∈ J\ (r1, . . . , ri). Note that J\ (r1, . . . , ri) ̸= ∅ for otherwise J
would be finitely generated. We then have an ascending sequence

(r1) ⊊ (r1, r2) ⊊ (r1, r2, r3) ⊊ . . .

which contradicts our assumptions. So J is finitely generated.

Lemma 5.3. Let R be a noetherian ring and I ⊆ R an ideal. Then the quotient ring R/I is noetherian.

Proof. Let q : R → R/I be the quotient map. Let J be an ideal of R/I. The ideal q−1(J) is finitely
generated by assumption and the image by q of any set of generators of q−1(J) is a set of generators
for J .
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Lemma 5.4. Let R be a noetherian ring and let S ⊆ R be a multiplicatively closed subset. Then the
ring RS is noetherian.

Proof. Let λ : R → RS be the natural ring homomorphism. In the proof of Lemma 3.6 we showed
that for any ideal I of RS , the ideal generated by λ

(
λ−1(I)

)
is I (see (ii) in the proof). The image of

any finite set of generators of λ−1(I) under λ is thus a finite set of generators for I.

Lemma 5.5. Let R be a noetherian ring. Let M be a finitely generated R-module. Then any submodule
of M is also finitely generated.

Proof. By assumption there is a surjective map of R-modules q : Rn → M for some n ≥ 0. To prove
that a submodule N ⊆M is finitely generated, it is sufficient to prove that q−1(N) is finitely generated.
Hence we may assume that M = Rn. We now prove the statement by induction on n. The case n = 1
is verified by assumption. Let ϕ : Rn → R be the projection on the first factor. Let N ⊆ Rn be a
submodule. We then have an exact sequence

0 → N ∩Rn−1 → N → ϕ(N) → 0

where Rn−1 is viewed as a submodule of Rn via the map (r1, . . . , rn−1) 7→ (r1, . . . , rn−1, 0). Now
ϕ(N) is finitely generated since ϕ(N) is an ideal in R and N ∩ Rn−1 is finitely generated by the
inductive hypothesis. Let a1, . . . , ak ∈ N ∩Rn−1 be generators of N ∩Rn−1 and let b1, . . . , bl ∈ ϕ(N)
be generators of ϕ(N). Let b′1, . . . , b′l ∈ Rn be such that ϕ (b′i) = bi for all i ∈ {1, . . . , l}. Then the set
{a1, . . . , ak, b′1, . . . , b′l} generates N (verify).

Lemma 5.6. Let R be a noetherian ring. If I ⊆ R is an ideal, then there is an integer t ≥ 1 such that
r(I)t ⊆ I. In particular, some power of the nilradical of R is the 0 ideal.

Proof. By assumption, we have r(I) = (a1, . . . , ak) for some a1, . . . , ak ∈ R. By assumption again,
there is an integer n ≥ 1 such that ani ∈ I for all i ∈ {1, . . . , k}. Let t = k(n − 1) + 1. Then
r(I)t ⊆ (an1 . . . , a

n
k ) ⊆ I.

The following theorem is one of the main justifications for the introduction of the noetherian
condition.

Theorem 5.7 (Hilbert basis theorem). Suppose that R is noetherian. Then the polynomial ring R[x]
is also noetherian.

Proof. Let I ⊆ R[x] be an ideal. The leading coefficients of the polynomials in I form an ideal J of R
(check). Since R is noetherian, J has a finite set of generators, say a1, . . . , ak. For each i ∈ {1, . . . , k},
choose fi ∈ I such that fi(x) = aix

ni+ (terms of lower degree). Let n be the maximum of the ni. Let
I ′ = (f1(x), . . . , fk(x)) ⊆ I be the ideal generated by the fi(x).

Now let f(x) = axm + ( terms of lower degree) be any polynomial in I. By construction, we have
a = r1a1 + · · ·+ rkak for some r1, . . . , rk ∈ R.

Suppose first that m ≥ n. The polynomial

f(x)− r1f1(x)x
m−n1 + · · ·+ rkfk(x)x

m−nk

is then of degree < m (the leading terms cancel) and it also lies in I. Applying the same procedure
to this polynomial we obtain a new polynomial of degree < m− 1 and we keep going in the same way
until we obtain a polynomial of degree < n. We have then expressed the polynomial f(x) as a sum of
a polynomial of degree < n and an element of I ′. In other words, we have shown that f(x) lies in the
R-submodule M ∩ I+ I ′ of R[x], where M is the R-submodule of R[x], generated by 1, x, x2, . . . , xn−1.

If m < n then we have f(x) ∈M ∩ I so that we also have f(x) ∈M ∩ I + I ′.
Since f(x) was arbitrary, we see that we have shown that

I =M ∩ I + I ′
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NowM∩I is anR-submodule ofM ≃ Rn and is thus finitely generated (as anR-module) by Lemma 7.4.
If we let g1(x), . . . , gt(x) ∈M ∩ I be a set of generators, then the set g1(x), . . . , gt(x), f1(x), . . . , fk(x)
is clearly a set of generators of I (as an ideal).

Some history. The German mathematician Paul Gordan, who was active at the beginning of the
20th century, was the first to ask explicitly (to my knowledge) whether Theorem 7.6 is true and
considered this to be a central question of a then very popular subject, called Invariant Theory (which
we don’t have the time to describe here). As the name of the theorem suggests, David Hilbert found the
above simple proof. Paul Gordan had presumably tried to tackle the problem directly, by devising an
algorithm that would provide a finite set of generators for an ideal given by an infinite set of generators
and did not think of applying the abstract methods, which are used in Hilbert’s proof (which is the
above proof). The proof of Hilbert’s basis theorem is one of the starting points of modern commutative
algebra. Paul Gordan is said to have quipped on seeing Hilbert’s proof that "Das is nicht Mathematik,
das ist Theologie!" (This is not mathematics, this is theology!). There are nowadays more "effective"
proofs of Hilbert’s basis theorem, using so-called Groebner bases.

From Theorem 5.7, we deduce that R [x1, . . . , xk] is noetherian for any k ≥ 0. From this and
Lemma 5.3, we deduce that every finitely generated algebra over a noetherian ring is noetherian.

Finally, we consider primary decompositions in noetherian rings.

Theorem 5.8 (Lasker-Noether). Let R be a noetherian ring. Then every ideal of R is decomposable.

Proof. If I is an ideal of R, we shall say that I is irreducible if whenever I1, I2 are ideals of R and
I = I1 ∩ I2, we have either I = I1 or I = I2.

Claim. Let J ⊆ R be an ideal. Then there are irreducible ideals J1, . . . , Jk such that J = ∩k
i=1Jk.

We prove the claim. Let us say that an ideal is decomposable by irreducible ideals (short: dic) if
it is a finite intersection of irreducible ideals. Suppose that J is not dic (otherwise we are done). In
particular, J is not irreducible and thus there are ideals M and N such that M ∩ N = J and such
that J ⊊ M and J ⊊ N . Since J is not dic, we see that either N or M are not dic. Suppose without
restriction of generality that M is not dic. Repeating the same reasoning for M and continuing we
obtain a sequence of dic ideals J ⊊M ⊊M1 ⊊M2 ⊊ . . . This contradicts Lemma 5.2. Thus J is dic.

Claim. An irreducible ideal is primary.
We prove the claim. Let J be an irreducible ideal and suppose that J is not primary. Then there

is an element x ∈ R/J , which is a zero divisor and is not nilpotent. Let q : R → R/J be the quotient
map.

Consider the ascending sequence

Ann(x) ⊆ Ann
(
x2

)
⊆ Ann

(
x3

)
⊆ . . .

This sequence must stop by Lemma 5.2 and Lemma 5.3. So let us suppose that

Ann
(
xk

)
= Ann

(
xk+1

)
= Ann

(
xk+2

)
= . . .

for some k ≥ 1. Now consider the ideal
(
xk

)
∩ Ann

(
xk

)
. If λxk ∈

(
xk

)
∩ Ann

(
xk

)
for some

λ ∈ R/J then we have by definition λx2k = 0 and hence λ ∈ Ann
(
x2k

)
. Since Ann

(
x2k

)
=

Ann
(
xk

)
we then have λxk = 0. Thus

(
xk

)
∩ Ann

(
xk

)
= (0). On the other hand, note that(

xk
)
̸= (0) and Ann

(
xk

)
̸= 0 by construction. Thus we have J = q−1

((
xk

))
∩ q−1

(
Ann

(
xk

))
and

q−1
((
xk

))
̸= J, q−1

(
Ann

(
xk

)))
̸= J , a contradiction. Thus J is primary.

The conjunction of both claims obviously proves the Theorem, so we are done.

Let R be a noetherian ring and let I ⊆ R be a radical ideal. As explained after Theorem 4.9, a
consequence of Theorem 5.8 is that there is a unique set {q1 . . . , qk} of distinct prime ideals in R such
that

• I = ∩k
i=1qi
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• for all i ∈ {1, . . . , k} we have qi ⊉ ∩j ̸=iqj .

Furthermore, the set {q1 . . . , qk} is precisely the set of prime ideals, which are minimal among the
prime ideals containing I. For affine varieties, V (I) is the union of the V (qi).

In particular, if p1, . . . , pl is the set of minimal prime ideal of R, there there is a natural injective
homomorphism of rings

R/r((0)) ↪→
l∏

i=1

R/pi
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