

Algebraic topology and homological algebra

Sheet 1 — Due 25/02

Practice problems (not to hand in)

1. (Partition of unity) Recall that a topological space X is called

- *Hausdorff*, if for each pair of distinct points $x, y \in X$, there exist disjoint open subset U and V such that $x \in U$ and $y \in V$;
- *compact* if every open cover of X has a finite subcover.

Let X be a compact Hausdorff space and let $\{U_\alpha\}_{\alpha \in A}$ be an open cover of X . Show that there exist a finite number of continuous real-valued functions h_1, \dots, h_m on X with the following properties:

- (i) $0 \leq h_j \leq 1$, $1 \leq j \leq m$
- (ii) $\sum h_j = 1$
- (iii) For each $1 \leq j \leq m$, there is an index α_j such that the closure of the set $\{x : h_j(x) > 0\}$ is contained in U_{α_j} .

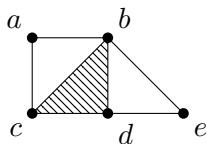
2. Prove, in every category, that each object has a unique identity morphism.

HW problems to hand in

1. For $n \geq 1$, define $\mathbb{R}P^n = S^n / \sim$, where the equivalence relation is defined by declaring $x \sim y$ if and only if $x = y$ or $x = -y$. In other words, $\mathbb{R}P^n$ is obtained by identifying pairs of antipodal points. The space $\mathbb{R}P^n$ is called the *real projective space* of dimension n , and it can be regarded as the set of lines in \mathbb{R}^{n+1} which pass through the origin. Establish the following assertions:

- (i) $\mathbb{R}P^n$ is compact and Hausdorff
- (ii) The projection $\pi : S^n \rightarrow \mathbb{R}P^n$ is a local homomorphism, that is, each $x \in S^n$ has an open neighbourhood that is mapped homeomorphically by π onto an open neighbourhood of $\pi(x)$.
- (iii) $\mathbb{R}P^1$ is homeomorphic to the circle S^1
- (iv) $\mathbb{R}P^n$ is homeomorphic to the quotient space obtained from the closed unit ball D^n in \mathbb{R}^n by identifying antipodal points of its boundary S^{n-1} .

2. Compute the simplicial homology of the following simplicial complex:



3. Prove that $\Delta^n \approx D^n$ are homeomorphic.

4. (i) Prove that if f, g are composable morphisms in a category such that $g \circ f$ and g are isomorphisms, then f is an isomorphism.
(ii) Let X be a space. Show that the assignment $Y \rightarrow X \times Y$ defines a functor $\text{Top} \xrightarrow{X \times -} \text{Top}$.