
Informatics 3

Ádám Gyenge

Course information

Format
▶ Lecture: Tuesday 8.30-10.00

▶ Lab: Thursday 8.30-10.00

▶ Webpage:
https://adamgyenge.gitlab.io/teaching/info3/2025/

▶ Lecture notes on the website (work in progress, be aware of
mistakes)

▶ Email: Gyenge.Adam@ttk.bme.hu

Content

1. Scientific programming in Python
▶ Advanced features of NumPy
▶ Symbolic computations with SymPy
▶ An outlook to SAGE

2. Computational topology
▶ Basics of topology
▶ Knots and links
▶ 2-manifolds
▶ Triangulations and simplicial complexes

Final grade

1. Midterm 1 (on week 6 lab): 30%

2. Midterm 2 (on week 12 lecture): 30%

3. Project: 30%
▶ Task: solve an actual scientific problem using SymPy (and

possibly other Python libraries)
▶ Some ideas are given in Section 7 of the notes
▶ Output: Jupyter notebook or latex document (+Python source

code), about 3-4 pages [A4]
▶ Can be done in pairs (then 6-8 pages)
▶ Presentation of ideas (2-3 mins): week 6 lab
▶ Final presentation (10-15 mins): week 13 lab

4. Participation: 10%

Introduction to Python in Science

▶ Python is an open-source, high-level programming language.

▶ Widely adopted in scientific computing for its simplicity and
versatility.

▶ Offers extensive libraries for data analysis, visualization, and
computation.

Why Python?

▶ Easy to learn and use.

▶ Strong community support.

▶ Cross-platform compatibility.

Core Libraries in the Ecosystem

Popular Libraries

▶ NumPy: Numerical computations with multi-dimensional
arrays.

▶ SciPy: Advanced scientific computing.

▶ Pandas: Data manipulation and analysis.

▶ Matplotlib and Seaborn: Data visualization.

▶ SymPy: Symbolic mathematics.

Introduction to NumPy

▶ NumPy (Numerical Python) is an open-source library for
numerical computing in Python.

▶ Created in 2005 by Travis Oliphant by merging features from
two predecessor libraries: Numeric and Numarray.

▶ Introduced a unified and efficient array object for advanced
mathematical operations.

▶ Serves as the basis for many other libraries, including SciPy,
pandas, and scikit-learn.

▶ Widely used in fields such as data analysis, machine learning,
and scientific research.

Core Technology

▶ NumPy leverages optimized libraries like BLAS (Basic Linear
Algebra Subprograms) and LAPACK (Linear Algebra
PACKage).

▶ BLAS provides low-level routines for vector and matrix
operations.

▶ LAPACK builds on BLAS for complex problems, including
solving linear systems and eigenvalue computations.

▶ Both BLAS and LAPACK are written in highly optimized C
and Fortran, ensuring speed and reliability.

▶ This reliance on optimized libraries makes NumPy a
cornerstone of high-performance scientific computing.

Key Features of NumPy

▶ Efficient multi-dimensional array object (ndarray).

▶ Broad range of mathematical functions.

▶ Broadcasting and vectorization for performance.

Installing and importing NumPy

1. Install SymPy using pip to get started:

pip install numpy

2. Import SymPy into your Python script as np:

import numpy as np

Creating Arrays

The key data type in NumPy is that of an N-dimensional array
object, called ndarray.

Vector and matrix

v = np.array([1, 2, 3])

A = np.array([[1, 2], [3, 4]])

Random matrix

B = np.random.random((3, 3))

▶ Vectors: 1D arrays.

▶ Matrices: 2D arrays.

▶ Arrays can be initialized from lists or randomly.

Properties of arrays
▶ Shape: Specifies the dimensions of the array (e.g., rows and

columns). Accessed using array.shape.
▶ Data Type (dtype): Defines the type of elements in the

array, such as integers, floats, or complex numbers. Accessed
using array.dtype.

▶ Size: Total number of elements in the array. Accessed using
array.size.

▶ Dimension (ndim): Indicates the number of dimensions
(axes) of the array. Accessed using array.ndim.

▶ Item Size: Memory size (in bytes) of each array element.
Accessed using array.itemsize.

▶ Memory Layout: Arrays can be stored in row-major (C-style)
or column-major (Fortran-style) order. Accessed using
array.flags.

▶ Mutability: NumPy arrays are mutable, meaning their
contents can be modified after creation.

▶ Homogeneity: All elements in a NumPy array must be of the
same data type for efficient computation.

Element-wise Operations

v1 = np.array([1, 2, 3])

v2 = np.array([4, 5, 6])

result = v1 + v2

▶ Supports element-wise addition, subtraction, multiplication,
etc.

Matrix Multiplication and Transpose

C = np.dot(A, B)

A_T = np.transpose(A)

▶ Use np.dot() for matrix multiplication.

▶ Transpose matrices using np.transpose().

Submatrices

submatrix = B[1:, 1:]

column_vector = A[:, 0]

▶ Extract specific parts of matrices.

▶ Useful for analyzing large datasets.

Vector and Matrix Norms

vector_norm = np.linalg.norm(v)

matrix_norm = np.linalg.norm(A, ’fro’)

▶ Measure size or magnitude.

▶ Vector norms: Length of a vector.

▶ Frobenius norm: Matrix magnitude.

The result are of type np.float64:

>>> vector_norm

np.float64(3.7416573867739413)

>>> matrix_norm

np.float64(3.872983346207417)

Solving Linear Equations

A = np.array([[2, 1], [1, -3]])

b = np.array([8, 1])

x = np.linalg.solve(A, b)

▶ Solve Ax = b using np.linalg.solve().

Result:

>>> x

array([3.57142857, 0.85714286])

Eigenvalues and Eigenvectors

Finding eigenvalues and eigenvectors

A = np.array([[4, -2],

[1, 1]])

eigenvalues, eigenvectors = np.linalg.eig(A)

Result:

>>> eigenvalues

array([3., 2.])

>>> eigenvectors

array([[0.89442719, 0.70710678],

[0.4472136 , 0.70710678]])

SVD Decomposition

A = np.array([[1, 2],

[3, 4],

[5, 6]])

U, S, VT = np.linalg.svd(A)

This gives:

>>> U

array([[-0.2298477 , 0.88346102, 0.40824829],

[-0.52474482, 0.24078249, -0.81649658],

[-0.81964194, -0.40189603, 0.40824829]])

>>> S

array([9.52551809, 0.51430058])

>>> VT

array([[-0.61962948, -0.78489445],

[-0.78489445, 0.61962948]])

QR Decomposition

QR decomposition: a matrix A is decomposed into an orthogonal
matrix Q and an upper triangular matrix R, such that

A = QR

In NumPy:

A = np.array([[1, 2, 4], [3, 8, 14], [2, 6, 13]])

Perform QR decomposition

Q, R = np.linalg.qr(A)

Broadcasting

▶ One of the most powerful features of NumPy is broadcasting,
which allows arrays of different shapes to be used in
arithmetic operations.

▶ Instead of reshaping the arrays manually, NumPy
automatically stretches the smaller array along the missing
dimensions.

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

B = np.array([1, 2, 3])

The we can add this 1D array to each row of the matrix

>>> A+B

array([[2, 4, 6],

[5, 7, 9],

[8, 10, 12]])

Vectorization

▶ Replace loops with array operations.

▶ Uses optimized C code in the background instead of Python
loops

▶ Drastically speeds up computations.

Example:

data = np.random.random(1000000)

squared_data = data ** 2

Masked Arrays

▶ Masked arrays are arrays that allow elements to be masked or
ignored during calculations.

▶ This is useful in scientific datasets where missing or invalid
data may occur.

Create an array with invalid data

data = np.array([1, 2, -999, 4, 5])

Mask the invalid data (-999)

masked_data = np.ma.masked_values(data, -999)

The result looks in Python as follows.

>>> masked_data

masked_array(data=[1, 2, --, 4, 5],

mask=[False, False, True, False, False],

fill_value=-999)

Masked Arrays

One we have a masked array, we can perform various calculations
on it. For example, let us compute the mean of the data set,
excluding the masked elements:

Calculate the mean, ignoring the masked element

>>> masked_data.mean()

np.float64(3.0)

Masked arrays are particularly important in fields like astronomy
and climate science, where datasets often have missing or invalid
entries due to sensor errors or data corruption.

Memory Mapping
▶ NumPy supports memory mapping of large arrays stored in

binary files on disk, allowing for partial loading of the data
without loading the entire dataset into memory.

▶ This feature is useful when working with extremely large
datasets that cannot fit into the available memory.

▶ Instead of loading the entire array, NumPy accesses only the
required sections, making computations possible on
memory-constrained systems.

filename = ’data.dat’

large_array = np.memmap(filename, dtype=’float32’,

mode=’w+’, shape=(10000, 10000))

Assign values to parts of the array

large_array[:1000, :1000] = np.random.random((1000, 1000))

Flush changes to disk

large_array.flush()

Structured Arrays
▶ NumPy also supports structured arrays, which allow users to

store heterogeneous data (e.g., mixed types) in a single array.

▶ Structured arrays can be thought of as NumPy’s version of a
database table or a spreadsheet, where each column can have
different types.

Define a structured data type with fields

dt = np.dtype([(’name’, ’U10’), (’age’, ’i4’),

(’weight’, ’f4’)])

Create a structured array

people = np.array([(’Alice’, 25, 55.0),

(’Bob’, 30, 85.5)], dtype=dt)

print("Names:", people[’name’])

print("Ages:", people[’age’])

print("Weights:", people[’weight’])

Advanced Indexing

▶ In addition to basic slicing, NumPy supports advanced
indexing techniques such as boolean indexing and indexing
with integer arrays.

▶ These techniques are useful when selecting specific subsets of
data based on conditions or patterns.

Create an array of numbers

data = np.array([10, 20, 30, 40, 50])

Boolean indexing: select elements greater than 30

greater_than_30 = data[data > 30]

In-place Operations

arr = np.array([1, 2, 3])

arr += 10

▶ Modify arrays without creating new ones.

Numerical Methods with SciPy

SciPy Overview:

▶ SciPy is built on NumPy for high-level scientific computations.

▶ Provides modules for integration, differentiation, optimization,
and more.

▶ Commonly used in scientific computing, engineering, and data
analysis.

Modules Discussed:

▶ Integration: scipy.integrate

▶ Optimization: scipy.optimize

▶ Signal/Image Processing: scipy.signal, scipy.ndimage

▶ Linear Algebra: scipy.linalg

▶ Statistics: scipy.stats

Numerical Integration
Integration with SciPy:

▶ scipy.integrate provides functions for definite and
indefinite integrals.

▶ Example: Definite integral of x2 from 0 to 1.

def func(x):

return x**2

result, error = sci.integrate.quad(func, 0, 1)

print(result, error)

Output:

>>> result

0.3333333333333333

>>> error

3.700743415417188e-15

Solving Differential Equations
▶ solve ivp provides tool solving DE’s numerically

▶ Example: Solve dy/dt = −2y .

Define the differential equation dy/dt = -2y

def dydt(t, y):

return -2 * y

Solve the equation with initial condition y(0) = 1

solution = integrate.solve_ivp(dydt, [0, 5], [1],

method=’RK45’, t_eval=np.linspace(0, 5, 100))

Arguments:

▶ Time span [t0, tend] for the solution is [0, 5]

▶ Initial condition is set to be y(0) = 1.

▶ The argument method=’RK45’ specifies the Runge-Kutta
method for integration.

▶ The argument t eval gives the time points at which to store
the solution.

Result

Image Processing

Image Manipulation:

▶ scipy.ndimage provides tools for image filtering and
transformations.

▶ Example: Apply Gaussian blur.

blurred_image = ndimage.gaussian_filter(image, sigma=2)

Use Cases:

▶ Smoothing images.

▶ Edge detection.

Statistics with scipy.stats
▶ Probability theory and statistics.
▶ Distributions include:

▶ Continuous: Normal (norm), Exponential (expon), Uniform
(uniform), Beta (beta), etc.

▶ Discrete: Binomial (binom), Poisson (poisson), Geometric
(geom), etc.

Example:

from scipy.stats import norm

Probability density function (PDF)

x = norm.pdf(0, loc=0, scale=1)

Cumulative distribution function (CDF)

y = norm.cdf(0, loc=0, scale=1)

Generate random samples

samples = norm.rvs(size=1000)

Basic Statistics in scipy.stats

▶ Descriptive Statistics: mean, median, mode, variance, std.

▶ Order Statistics: percentileofscore,
scoreatpercentile.

▶ Moments: moment (e.g., skewness (3rd), kurtosis (4th)).

Example:

from scipy.stats import skew, kurtosis

import numpy as np

Generate data

data = np.random.normal(size=100)

Compute statistics

mean = np.mean(data)

skewness = skew(data)

kurt = kurtosis(data)

Advanced Statistics with scipy.stats

▶ Hypothesis Testing: ttest ind, ttest rel,
chi2 contingency, ks 2samp.

▶ Correlation Analysis: pearsonr, spearmanr.

▶ Fit to Data: curve fit, kde.

▶ ANOVA: f oneway for one-way ANOVA.

Example:

from scipy.stats import ttest_ind, pearsonr

Two-sample t-test

result = ttest_ind([1, 2, 3], [4, 5, 6])

Correlation coefficient

corr, p_value = pearsonr([1, 2, 3], [1, 2, 4])

Linear Algebra

Eigenvalues and Eigenvectors:

▶ scipy.linalg extends NumPy for advanced linear algebra.

▶ Example: Compute eigenvalues and eigenvectors.

eigenvalues, eigenvectors = scipy.linalg.eig(matrix)

print(eigenvalues, eigenvectors)

LU Decomposition

Matrix Factorization:

▶ Decompose a matrix into P, L,U.

▶ Useful for solving linear systems.

P, L, U = scipy.linalg.lu(matrix)

print(L, U)

Sparse Matrices

A sparse matrix or sparse array is a matrix in which most of the
elements are zero.
Efficient Matrix Representation:

▶ scipy.sparse for handling large, sparse datasets.

▶ Example: Create and manipulate sparse matrices.

sparse_matrix = csr_matrix(dense_matrix)

transpose = sparse_matrix.transpose()

	Introduction
	NumPy
	Getting Started
	Basic Operations
	Advanced Features
	Matrix Decompositions
	Advanced Functionalities

