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Introduction

Lecture 0: Introduction to simplicial homology
Necessary tools to work in Topological Data Analysis

Definitions and ideas used for more than 100 years, from the beginning of
algebraic topology

I will present the ideas from scratch and very slowly, so that they can be
understood by the whole audience of the course (not only mathematicians)
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Simplicial complexes

Simplicial complexes are a model for (topological) spaces made of
simplices

Simplices can be seen as “triangles” in different dimensions

0-simplex: a point (called a vertex)

1-simplex: a line segment (called an edge)

2-simplex: a triangle (filled)

3-simplex: a tetrahedron (solid)

. . .
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Simplices

0-simplex 1-simplex 2-simplex 3-simplex
. . .

A k-simplex σ is made by (k + 1) vertices and all the space between them
(the convex hull). The number k is the dimension of the simplex

The boundary of a k-simplex is made of k+1 simplices of dimension k − 1,
which are the (k − 1)-faces

There also faces of dimension 0, 1, 2, . . . , made of the (convex hull) of
subsets of the vertices of σ

Faces of a 2-simplex:

1-faces: edges

0-faces: vertices

Faces of a 3-simplex:

2-faces: triangles

1-faces: edges

0-faces: vertices
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Simplicial complexes

A simplicial complex is a set of simplices glued by their faces

Example:
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Simplicial complexes

A simplicial complex is a set of simplices such that the intersection of
any two is either

(i) empty, or

(ii) a single simplex, that is a face of both simplices

Example:
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Not everything is allowed

It is not a simplicial complex
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Examples of simplicial complexes

How can we construct a circle?

is not valid

is not valid

is a simplicial complex ≡



11/42

Examples of simplicial complexes

How can we construct a disk?

is not valid

is not valid

is a simplicial complex ≡
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Abstract simplicial complexes

An abstract simplicial complex is a non-empty family of sets (called
simplices) that is closed under taking subsets, i.e., every non-empty
subset of a set in the family is also in the family:

A family (of sets) X is an abstract simplicial complex if for every set
Y1 ∈ X and Y2 ⊂ Y1 and Y2 ̸= ∅ then Y2 ∈ X .

Example:
v0

v1
v5

v6

v2

v7

v2

v7

v3 v4

X =[[v0], [v1], [v2], [v3], [v4], [v5], [v6], [v7], [v0, v1], [v0, v2], [v0, v3], [v1, v2],

[v1, v3], [v2, v3], [v1, v4], [v4, v5], [v4, v6], [v4, v7], [v5, v6], [v5, v7],

[v0, v1, v2], [v0, v1, v3], [v0, v2, v3], [v1, v2, v3], [v4, v5, v6], [v0, v1, v2, v3]]
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Abstract simplicial complexes

The faces of a simplex σ are other simplices τ such that the vertices of τ
are also vertices of σ

Faces of the 3-simplex [v0, v1, v2, v3]:

2-faces: triangles [v1, v2, v3], [v0, v2, v3], [v0, v1, v3], [v0, v1, v2]

1-faces: edges [v2, v3], [v1, v3], [v1, v2], [v0, v3], [v0, v2], [v0, v1]

0-faces: vertices [v0], [v1], [v2], [v3]

We denote the faces of dimension k − 1 of a k-simplex as:

∂i ([a0, a1, . . . , ak ]) = [a0, a1, . . . , ai−1, ai+1, . . . , ak ] = [a0, a1, . . . , âi , . . . , ak ]

(supposing that we have an order for the vertices)

The facets of an abstract simplicial complex are the maximal simplices,
that is, simplices that are not face of another simplex
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Abstract simplicial complexes

In the example v0

v1
v5

v6

v2

v7

v2

v7

v3 v4

the facets are [v0, v1, v2, v3], [v4, v5, v6], [v1, v4], [v4, v7] and [v5, v7]

An abstract simplicial complex can be geometrically realized into a
simplicial complex. A simplicial complex can also be thought of as an
abstract simplicial complex by giving names to the vertices. In this lecture,
we will talk indistinctly about simplicial complexes and abstract simplicial
complexes
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Simplicial complexes from data clouds

Given a set of points P in a metric space (usually Rn) and a real number
α ≥ 0:

The Vietoris-Rips complex VRα(X ) is the set of simplices [x0, ..., xk ]
with xi ∈ P such that dX (xi , xj) ≤ α for all (i , j).

α/2

It follows from the definition that this is an abstract simplicial
complex. If we change the parameter α, the VR complex can change
by adding or removing some simplices.
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Simplicial complexes from data clouds

Given a set of points P in a metric space (usually Rn) and a real number
α ≥ 0:

The Čech complex Cechα(X ) is defined as the set of simplices
[x0, ..., xk ] with xi ∈ P such that the k + 1 closed balls B(xi , α) have
a non-empty intersection.

α

It follows from the definition that this is an abstract simplicial
complex. If we change the parameter α, the Čech complex can
change by adding or removing some simplices.
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Simplicial complexes from data clouds

Notice that these two complexes are related:

VRα(X ) ⊆ Cechα(X ) ⊆ VR2α(X )

The following relations will be important in the next lectures:

VRα(X ) ⊆ VRα′(X ) for every α ≤ α′

Cechα(X ) ⊆ Cechα′(X ) for every α ≤ α′
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Euler characteristic

The Euler Characteristic is a topological invariant, that is, a number
that we assign to a shape, or a simplicial complex in our case, to learn
something about its global structure.

Euler’s initial observation: for any three-dimensional convex polyhedron,
the number of vertices minus the number of edges plus the number of
faces is always equal to 2. This number is called the Euler characteristic

Image obtained from https:

//mathstrek.blog/2013/12/02/from-euler-characteristics-to-cohomology-i/

However, this is not true for other solids or shapes that are not convex (for
instance because they have holes).

https://mathstrek.blog/2013/12/02/from-euler-characteristics-to-cohomology-i/
https://mathstrek.blog/2013/12/02/from-euler-characteristics-to-cohomology-i/
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Euler characteristic

The Euler characteristic of a simplicial complex is defined as the
alternating sum of the number of n-simplices:

k0 − k1 + k2 − k3 + · · ·

where ki is the number of i-dimensional simplices.

Euler characteristic of our example: 8 - 12 + 5 - 1 = 0

v0

v1 v5

v6

v2

v7

v2

v7

v3 v4

As we will see later, the Euler characteristic can also be determined by
using the notion of homology
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Simplicial sets

A simplicial set K consists of:

a set Kn for every n ≥ 0;

for every pair of integers (i , n) such that 0 ≤ i ≤ n, face and
degeneracy operators ∂i : Kn → Kn−1 and si : Kn → Kn+1 that
satisfy the simplicial identities:

∂i∂j = ∂j−1∂i if i < j

si sj = sj+1si if i ≤ j

∂i sj = sj−1∂i if i < j

∂i sj = Id if i = j , j + 1

∂i sj = sj∂i−1 if i > j + 1

It is a generalization of (abstract) simplicial complex
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Simplicial sets

This construction allows us to represent spaces with less simplices. For
instance, a circle can be represented as:

This is not a simplicial complex, but it is a simplicial set.

In general, we can represent the sphere Sn with a simplicial set with only
two simplices: one vertex and one simplex of dimension n.
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Groups

A group is a set G with a binary operation · that combines two elements
to yield another one, such that:

1 The set is closed under the operation: if a, b ∈ G then a · b ∈ G .

2 The operation is associative: (a · b) · c = a · (b · c) for a, b, c ∈ G .

3 The set has an identity element under the operation that is also an
element of the set: there exists e ∈ G such that e · a = a · e = a for
all a ∈ G .

4 Every element of the set has an inverse under the operation that is
also an element of the set: for all a ∈ G , there exists a−1 ∈ G such
that a · a−1 = e = a−1 · a.

The operation is not required to be commutative, that is, in general a · b is
not equal to b · a. If the operation is commutative, then the group is
called abelian
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Groups

Examples (and non-examples) of groups:

The set of integers Z with the addition is a group

The set of integers under subtraction is not a group

The set of natural numbers under addition is not a group

The set of linear combinations of a set of n generators < a1, . . . , an >
is a group with the formal addition of the coefficients. Example of
element of the group: 3 ∗ a1 − 2 ∗ a2 + 7 ∗ a3. Example of addition of
two elements:
(3 ∗ a1 − 2 ∗ a2 +7 ∗ a3) + (−1 ∗ a1 +1 ∗ a3) = 2 ∗ a1 − 2 ∗ a2 +8 ∗ a3.
This group is called the free abelian group generated by
< a1, . . . , an > and can be seen as Zn.

It is also possible to work with coefficients over Z2 ≡ Z/2Z = {0, 1}
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Chain complexes

Let A and B groups. A function f : A→ B is called a homomorphism of
groups if it is compatible with the group operation: f (a · b) = f (a) · f (b)
for all a, b ∈ A

A chain complex C∗ is a sequence of groups and homomorphisms of
groups

· · · ←− Cn−1
dn←− Cn

dn+1←−− Cn+1 ←− · · ·

such that dn ◦ dn+1 = 0 for all n ≥ 0

The homomorphisms dn are called differential or boundary maps
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Chain complex of a simplicial complex

We consider a simplicial complex X where the simplices are oriented (for
instance, choosing an order for the vertices).

We define a chain complex C∗(X ) = (Cn(X ), dn), where:

Cn(X ) is the free abelian group generated by the set of n-simplices,

Example: e2e1

e3

t

v1 v2

v0

C0(X )
d1←− C1(X )

d2←− C2(X )
d3←− 0 · · ·

Z3 Z3 Z
< v0, v1, v2 > < e1, e2, e3 > < t >
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Chain complex of a simplicial complex

We consider a simplicial complex X where the simplices are oriented (for
instance, choosing an order for the vertices).

We define a chain complex C∗(X ) = (Cn(X ), dn), where:

Cn(X ) is the free abelian group generated by the set of n-simplices,

Example: e1

e2 e5

e4
e3v0

v1

v2

v3

C0(X )
d1←− C1(X )

d2←− 0 · · ·
Z4 Z5

< v0, v1, v2, v3 > < e1, e2, e3, e4, e5 >
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Chain complex of a simplicial complex

We consider a simplicial complex X where the simplices are oriented (for
instance, choosing an order for the vertices).

We define a chain complex C∗(X ) = (Cn(X ), dn), where:

Cn(X ) is the free abelian group generated by the set of n-simplices,

and the differential or boundary map dn : Cn(X )→ Cn−1(X ) is
defined on the generators as the alternating sum dn =

∑n
i=0(−1)i∂i .

We recall ∂i ([a0, a1, . . . , ak ]) = [a0, a1, . . . , ai−1, ai+1, . . . , ak ]
= [a0, a1, . . . , âi , . . . , ak ]

With coefficients over Z2 ≡ Z/2Z, the signs of the differential map can be
ignored
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Chain complex of a simplicial complex

The differential or boundary map dn : Cn(X )→ Cn−1(X ) is defined on the
generators as the alternating sum dn =

∑n
i=0(−1)i∂i .

Example: e2e1

e3

t

v1 v2

v0

C0(X )
d1←− C1(X )

d2←− C2(X )
d3←− 0

Z3 Z3 Z
< v0, v1, v2 > < e1, e2, e3 > < t >

d1(e1) = d1([v0, v1]) = ∂0(e1)− ∂1(e1) = v1 − v0

d1(e2) = d1([v0, v2]) = v2 − v0; d1(e3) = d1([v1, v2]) = v2 − v1

d2(t) = d2([v0, v1, v2]) = ∂0(t)− ∂1(t) + ∂2(t) = e3 − e2 + e1

d1 =

−1 −1 0
1 0 −1
0 1 1

 ; d2 =

 1
−1
1

 ; d3 = 0
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Chain complex of a simplicial complex

The differential or boundary map dn : Cn(X )→ Cn−1(X ) is defined on the
generators as the alternating sum dn =

∑n
i=0(−1)i∂i .

Example: e1

e2 e5

e4
e3v0

v1

v2

v3

C0(X )
d1←− C1(X )

d2←− 0
Z4 Z5

< v0, v1, v2, v3 > < e1, e2, e3, e4, e5 >

d1(e1) = v1 − v0; d1(e2) = v2 − v0; d1(e3) = v2 − v1;

d1(e4) = d1([v1, v3]) = v3 − v1; d1(e5) = d1([v2, v3]) = v3 − v2

d1 =


−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

 ; d2 = 0
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Chain complex of a simplicial complex

We observe that dn ◦ dn+1 = 0:

For instance, in the disk: e2e1

e3

t

v1 v2

v0

d2(t) = d2([v0, v1, v2]) = e3 − e2 + e1

d1(e3 − e2 + e1) = d1(e3)− d1(e2) + d1(e1)

= v2 − v1 − v2 + v0 + v1 − v0 = 0
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Kernels, images and quotients

The kernel of a homomorphism of groups f : A→ B is the set of all
elements that are mapped to the zero element:

Ker(f ) = {a ∈ A|f (a) = 0} ⊆ A

The image of f is the set of the outputs:

Im(f ) = {f (a)|a ∈ A} ⊆ B

Let G be an abelian group and N a subgroup of G . Then the quotient
group is defined as

G/N = {gN|g ∈ G}.

Intuitively, G/N consists of all elements in G that are not in N.
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Homology

In a chain complex

C∗ : · · · ←− Cn−1
dn←− Cn

dn+1←−− Cn+1 ←− · · ·

Cycle group: Zn = Ker(dn) ⊆ Cn

Boundary group: Bn = Im(dn+1) ⊆ Cn

Since dn ◦ dn+1 = 0, one has Bn ⊆ Zn. Then, the n-th homology group
of C∗ is defined as the quotient group:

Hn(C ) = Zn/Bn = Ker(dn)/ Im(dn+1)

When working with coefficients over a field (for instance, Z2), these
groups are vector spaces and their ranks are called the Betti numbers of
the chain complex (or the simplicial complex):

βn = rank(Hn(C ))
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Homology

e2e1

e3

t

v1 v2

v0
C0(X )

d1←− C1(X )
d2←− C2(X )

Z3 Z3 Z
< v0, v1, v2 > < e1, e2, e3 > < t >

d1(e1) = v1 − v0; d1(e2) = v2 − v0; d1(e3) = v2 − v1

d2(t) = e3 − e2 + e1

Ker(d0) = C0(X ) =< v0, v1, v2 >= Z3

Im(d1) =< v1 − v0, v2 − v0, v2 − v1 >=< v1 − v0, v2 − v0 >= Z2

H0(X ) =< v0, v1, v2 > / < v1 − v0, v2 − v0 >= Z
Ker(d1) =< e3 − e2 + e1 >= Z; Im(d2) =< e3 − e2 + e1 >= Z
H1(X ) =< e3 − e2 + e1 > / < e3 − e2 + e1 >= 0

With coefficients over Z2 ≡ Z/2Z, we obtain H0(X ) = Z/2Z and
H1(X ) = 0. Hence, β0 = rank(H0(X )) = 1 and β1 = rank(H1(X )) = 0
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Homology

e1

e2 e5

e4
e3v0

v1

v2

v3

C0(X )
d1←− C1(X )

Z4 Z5

< v0, v1, v2, v3 > < e1, e2, e3, e4, e5 >

d1(e1) = v1 − v0; d1(e2) = v2 − v0; d1(e3) = v2 − v1;

d1(e4) = v3 − v1; d1(e5) = v3 − v2

Ker(d0) =< v0, v1, v2, v3 >= Z4

Im(d1) =< v1 − v0, v2 − v0, v2 − v1, v3 − v1, v3 − v2 >

=< v1 − v0, v2 − v0, v3 − v1 >= Z3; H0(X ) = Z
Ker(d1) =< e3 − e2 + e1, e5 − e4 + e3 >; Im(d2) = 0

H1(X ) =< e3 − e2 + e1, e5 − e4 + e3 > /0 = Z2

With coefficients over Z2 ≡ Z/2Z, we obtain H0(X ) = Z/2Z and
H1(X ) = (Z/2Z)2. Hence, β0 = rank(H0(X )) = 1 and
β1 = rank(H1(X )) = 2
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Homology computation

Homology groups (and Betti numbers) can be determined by means of
operations on the differential matrices

A technique that can be used is called Smith Normal Form, that is a
particular type of diagonalization of matrices (similar to Gaussian
elimination)

When working over a field, the Betti numbers can be determined by
computing the ranks of Smith Normal Forms of each matrix:

rank(Zn) is the number of zero columns in the SNF of dn

rank(Bn) is the number of non-zero rows in the SNF of dn+1

βn is the difference of these ranks
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Homology

What does homology (and Betti numbers) measure?

H0 : number of connected components

H1 : number of cycles

H2 : number of voids

Hn : number of n-dimensional holes



38/42

Euler characteristic (revisited)

We have seen that the Euler characteristic of a simplicial complex is
defined as the alternating sum of the number of n-simplices:

k0 − k1 + k2 − k3 + · · ·
where ki is the number of i-dimensional simplices.

It can also be determined as:

β0 − β1 + β2 − β3 + · · ·

Euler characteristic of our example: 8 - 12 + 5 - 1 = 1 -1 = 0

v0

v1 v5

v6

v2

v7

v2

v7

v3 v4
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Topological data analysis and Betti numbers

Topological Data Analysis (TDA) consists in applying techniques from
topology and algebra to the analysis of data, studying the shape of the
data

This can be done by using homology groups and Betti numbers

Space β0 β1 β2
Point 1 0 0
Circle 1 1 0
Sphere 1 0 1
Torus 1 2 1
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Persistent homology

From point clouds (or data sets), we can first construct one (or several)
simplicial complexes by means of the Vietoris-Rips or Čech constructions,
and then compute their Betti numbers

Problem of this approach: in the VR or Čech complexes, we can have
many small cycles or voids that are not representative of the data. To
solve this problem, the notion of persistent homology is used

Idea of persistent homology: construct the VR or Čech complexes for
different parameters α and track the Betti numbers in each of them
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The end

Thank you!
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