
Computer Algebra with SymPy

Ádám Gyenge

Example of Floating-Point Inaccuracy

Floating-point arithmetic can lead to small but significant
errors in calculations.

>>> (1 / 49) * 49

0.9999999999999999

This example shows how numerical inaccuracies arise from machine
precision limitations.

Why SymPy?

▶ Machine precision floating-point numbers may not be exact.

▶ Accumulated small errors can lead to significant inaccuracies.

▶ This may lead to big economical costs (e.g. Ariane 5, US$362
million)

▶ Some computations require exact results.

▶ Symbolic computation allows for analytic solutions and deeper
understanding of mathematical relationships.

What is a Computer Algebra System?

▶ Symbolic manipulation of mathematical expressions instead of
numerical computation.

▶ Enables exact solutions, simplifications, and symbolic calculus.

▶ Example: SymPy is a Python library for symbolic
mathematics.

▶ SymPy is lightweight and requires only Python, making it
accessible and versatile.

History of Computer Algebra Systems

Evolution of Computer Algebra Systems (CAS):

▶ 1960s: Development of first CAS like MACSYMA at MIT.

▶ 1970s: Emergence of REDUCE, a system for symbolic algebra.

▶ 1980s: Commercial systems such as Mathematica and Maple
introduced.

▶ 1990s: Open-source systems like Maxima and Axiom gained
popularity.

▶ 2000s: Python-based libraries like SymPy introduced for
integration with modern programming.

Importance: CAS have revolutionized mathematics by enabling
precise symbolic computations.

Installing and importing SymPy

1. Install SymPy using pip to get started:

pip install sympy

2. Import SymPy into your Python script:

import sympy as sp

Defining Symbols

Define symbolic variables to use in mathematical expressions:

x, y = sp.symbols(’x y’)

Symbols are the foundation for creating and manipulating
expressions in SymPy.
The symbols() function takes a string as an argument, where
each symbol is separated by a space.

Creating Expressions

Use symbols to create mathematical expressions:

expr = 2*x + 3*y

print(expr)

Output: 2x + 3y

Pretty Printing

▶ SymPy can format mathematical expressions in a way that
resembles traditional mathematical notation.

▶ For this, we call the init printing() method to enable
pretty printing.

▶ This method automatically selects the best printing format
depending on the environment, such as LaTeX for Jupyter
notebooks or Unicode for standard terminals.

▶ Formatting enhances readability and improves the
presentation of complex expressions.

Pretty Printing: example

Consider a basic power expression:

expr = (x + y)**3

We can compare the usual and the pretty printing of this
expression:

>>> expr

(x + y)**3

>>> sp.init_printing()

>>> expr

3

(x + y)

Latex printing

It is also possible to convert an expression into LATEX with the
latex() function:

>>> sp.latex(expr)

\left(x + y\right)^{3}

Simplification

Simplify complex expressions to their reduced forms:

expr = (x**2 + 2*x + 1)/(x + 1)

simplified_expr = sp.simplify(expr)

Output: x + 1

Expanding Expressions

Expand factored expressions:

expr = (x + 1)*(x + 2)

expanded_expr = sp.expand(expr)

Output: x2 + 3x + 2

Factoring Expressions

Factor algebraic expressions:

expr = x**2 + 3*x + 2

factored_expr = sp.factor(expr)

Output: (x + 1)(x + 2)

Substitution

Replace symbols with specific values:

expr = 2*x + 3*y

result = expr.subs({x: 1, y: 2})

Output: 8

▶ subs() is a member function of the expression itself

▶ To perform substitution on an expression, pass a list or
dictionary of (old, new) pairs.

Symbolic Substitution

Define an expression

expr = 2*x + 3*y

Substitute x with (z + 1)

new_expr = expr.subs(x, z + 1)

This replaces x with (z + 1) in the expression.

▶ Result:
2(z + 1) + 3y = 2z + 2 + 3y

▶ Code output:

>>> new_expr

3*y + 2*z + 2

Effect of substitution

It is important to note about subs() that it always returns a new
expression. The reason for this is that SymPy objects are
immutable. That means that subs does not modify it in-place.

>>> expr = sin(x)

>>> expr.subs(x, 0)

0

>>> expr

sin(x)

We see that performing expr.subs(x, 0) leaves expr
unchanged.

Floating Point Evaluation

Evaluate expressions with numerical approximations:

expr = sp.sqrt(2)

expr.evalf()

expr.evalf(30)

Output: 1.4142135623731 and
1.41421356237309504880168872421

Detour: OOP in Python
Classes define the blueprint for creating objects. They encapsulate
data (attributes) and behavior (methods).
▶ init (): Constructor method to initialize attributes.
▶ Methods: Functions defined inside a class that operate on its

attributes.
▶ Instance Attributes: Variables unique to each instance.
▶ Class Attributes: Shared across all instances.

Example:
class Car:

def __init__(self, brand, model):

self.brand = brand

self.model = model

def display(self):

return f"{self.brand} {self.model}"

car1 = Car("Toyota", "Corolla")

print(car1.display()) # Toyota Corolla

Subclasses and inheritance
Inheritance allows a new class to derive properties and methods
from an existing class.
▶ Base Class (Parent): The class being inherited from.
▶ Derived Class (Child or Subclass): The class inheriting the

properties.
▶ super(): Calls methods from the parent class.

Example:
class ElectricCar(Car):

def __init__(self, brand, model, battery_size):

super().__init__(brand, model)

self.battery_size = battery_size

def battery_info(self):

return f"{self.brand}, {self.model},

{self.battery_size} kWh"

ev = ElectricCar("Tesla", "Model 3", 75)

print(ev.battery_info()) # Tesla, Model 3, 75 kWh

Internal Representation of Expressions

▶ SymPy’s symbolic expression system defines expressions in a
symbolic tree representation.

▶ We can see what an expression looks like internally by using
the function srepr().

expr = x**3 + 3*x + 2

print(sp.srepr(expr))

Output: Add(Pow(Symbol(’x’), Integer(3)),

Mul(Integer(3), Symbol(’x’)), Integer(2))

Tree Representation

We can also visualize the structure of an expression as a tree using
the print tree() function:

sp.print_tree(expr, assumptions=False)

Output:

Add: x**3 + 3*x + 2

+-Integer: 2

+-Pow: x**3

| +-Symbol: x

| +-Integer: 3

+-Mul: 3*x

+-Integer: 3

+-Symbol: x

The Expr class

▶ Add, Pow and Mul are subclasses of the class Expr

▶ simplify(), expand(), factor(), subs(old, new) and
evalf() are methods of the class Expr

▶ Some other useful methods:
▶ as coefficients dict(): Returns coefficients of terms as a

dictionary.
▶ free symbols: Returns the set of variables in the expression.

Sympy objects

▶ All symbols are instances of the class Symbol.

▶ For the number in the expression, 2, we got Integer(2).

▶ Integer is the SymPy class for integers. It is similar to the
Python built-in type int, except that Integer is more
compatible with other SymPy types.

Sympify

The sympify() function converts Python objects, such as strings,
numbers, or lists, into SymPy expressions:

Convert string to SymPy expression

expr = sp.sympify("x**2 + 2*x + 1")

This results in

>>> expr

x**2 + 2*x + 1

Nested objects

The sympify() method also supports nested data structures like
lists or tuples:

nested = sp.sympify(["x**2", "2*x + 1"])

yields

>>> nested

[x**2, 2*x + 1]

Lambda Functions in Python

▶ Anonymous functions defined using the lambda keyword.

▶ Used for creating small, single-expression functions without a
formal def block.

General Form:

lambda arguments: expression

▶ Arguments: Input parameters.

▶ Expression: Single output expression (computed and
returned).

Example

Simple Lambda Function:

Adds 10 to a number

add_ten = lambda x: x + 10

print(add_ten(5)) # Output: 15

Use Cases

▶ Single-use functions (e.g., inside map(), filter(),
sorted()).

▶ Simplifies code for small, concise tasks.

numbers = [1, 2, 3, 4]

squared = map(lambda x: x**2, numbers)

print(list(squared)) # Output: [1, 4, 9, 16]

Lambdify

▶ The lambdify() function translates SymPy expressions into
numerical functions e.g. for fast evaluation.

▶ It bridges symbolic computation with numerical libraries like
math, NumPy, or SciPy,

▶ Enables symbolic expressions to be evaluated efficiently over
arrays or numerical inputs.

Create a numerical function

f = sp.lambdify(x**2 + 2*x + 1, expr)

Here, lambdify converts the expression x2 + 2x + 1 into a Python
function f that can be evaluated at any value:

>>> f(3)

16

Using NumPy with Lambdify

The modules argument in lambdify allows specifying the
numerical library used for evaluation:

import numpy as np

Create a numerical function using NumPy

f_np = sp.lambdify(x, expr, modules="numpy")

Then we can evaluate the obtained numerical function on NumPy
arrays:

>>> f_np(np.array([0, 1, 2, 3]))

array([1, 4, 9, 16])

Algebraic Functions

Common algebraic functions include:

▶ Square Root: sp.sqrt(x)

▶ Logarithms: sp.log(x), sp.log10(x)

▶ Powers: x**3 or sp.pow(x, 3)

Trigonometric Functions

SymPy supports trigonometric functions:

▶ Sine: sp.sin(x)

▶ Cosine: sp.cos(x)

▶ Tangent: sp.tan(x)

Hyperbolic Functions

Hyperbolic functions and their inverses:

▶ Sinh: sp.sinh(x)

▶ Cosh: sp.cosh(x)

▶ Inverse Sinh: sp.asinh(x)

Further Resources

Learn more about SymPy:

▶ Official Documentation: https://docs.sympy.org/

▶ Community Forums and Tutorials.

https://docs.sympy.org/

	Introduction
	Getting Started with SymPy
	Basic Operations
	Advanced Topics
	Functions in SymPy
	Conclusion

