
Calculus and Diffy Q’s

Ádám Gyenge

Basic Differentiation

SymPy can perform differentiation of mathematical expressions
symbolically. This is useful for obtaining exact representations of
derivatives.

Define symbols and an expression
x, y = sp.symbols(’x y’)
expression = x**2 + sp.sin(x*y)

Compute the partial derivative with respect to x
derivative_x = sp.diff(expression, x)

Compute the partial derivative with respect to y
derivative_y = sp.diff(expression, y)

Basic Differentiation Result

The partial derivative with respect to x is 2x + y , and the partial
derivative with respect to y is x cos(xy).

>>> derivative_x
2*x + y*cos(x*y)

>>> derivative_y
x*cos(x*y)

Higher-Order Differentiation

For higher-order derivatives, you can either pass the variable
multiple times or use the number of derivatives. Example:

>>> sp.diff(x**5, x, x)
20*x**3

>>> sp.diff(x**5, x, 2)
20*x**3

Mixed Partial Derivatives

SymPy also computes mixed partial derivatives.

>>> x, y, z = sp.symbols(’x y z’)
>>> sp.diff(sp.exp(x*y*z), x, y, y, z, z)

x*(x**3*y**3*z**3 + 8*x**2*y**2*z**2 + 14*x*y*z + 4)
*exp(x*y*z)

Symmetry of second derivatives

Theorem (Young’s theorem)
Exchanging the order of partial derivatives of a twice-differentiable
multivariate function

f (x1, x2, . . . , xn)

does not change the result. That is, the second-order partial
derivatives satisfy the identities

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

Implicit functions

▶ An implicit function is defined by an equation of the form
F (x , y) = 0, where F is a function of two variables, and y is
implicitly related to x .

▶ Unlike explicit functions, where y is expressed directly in terms
of x , implicit functions require solving the equation
F (x , y) = 0 to determine y as a function of x .

▶ In many cases, it is challenging or impossible to express y
explicitly, yet the implicit function theorem guarantees the
existence of y as a differentiable function of x under certain
conditions.

Implicit Differentiation

To differentiate an implicit function, we apply implicit
differentiation. Taking the total derivative of F (x , y) with respect
to x , we use the chain rule:

∂F

∂x
+

∂F

∂y

dy

dx
= 0.

Rearranging, we solve for dy
dx :

dy

dx
= −

∂F
∂x
∂F
∂y

,

provided that ∂F
∂y ̸= 0. This allows us to compute the derivative

without explicitly solving for y .

Implicit Differentiation

To differentiate implicit functions, use SymPy’s idiff() function.
Example:

Define an implicit equation
implicit_eq = x**5 + y**2 + z**4 - 8*x*y*z

Differentiate implicitly
implicit_derivative = sp.idiff(implicit_eq, y, x)

Implicit Differentiation Result

The derivative of y with respect to x is:

>>> implicit_derivative
(5*x**4/2 - 4*y*z)/(4*x*z - y)

>>> implicit_derivative.simplify()
(5*x**4 - 8*y*z)/(2*(4*x*z - y))

Unevaluated Derivatives
You can also create unevaluated derivatives using the Derivative
class. Example:

Create an unevaluated derivative
deriv = sp.Derivative(sp.exp(x*y*z), x, y, 2, z, 2)

Result:

>>> deriv
Derivative(exp(x*y*z), x, (y, 2), (z, 2))

We get nicer result if we initialize pretty printing:

Unevaluated Derivative

▶ Unevalutated derivatives can be useful when we want to
perform complex operations.

▶ To evaluate the derivative, use the doit() function:
>>> deriv.doit()
x*(x**3*y**3*z**3 + 8*x**2*y**2*z**2 + 14*x*y*z + 4)

*exp(x*y*z)

Antiderivatives

SymPy supports symbolic integration. Here’s an example of
computing an indefinite integral:

Define a simple expression
expression = x**2 + sp.sin(x)

Compute the indefinite integral
indefinite_integral = sp.integrate(expression, x)

Result:

>>> indefinite_integral
x**3/3 - cos(x)

Definite Integration

For definite integrals, you can specify the limits:

Define the limits of integration
lower_limit = 0
upper_limit = sp.pi

Compute the definite integral
definite_integral =

sp.integrate(expression, (x, lower_limit, upper_limit))

The result of the definite integral from 0 to π is:

>>> definite_integral
2 + pi**3/3

Improper Integrals

To compute improper integrals, use oo to denote infinity:

Define an improper integral
improper_integral = sp.integrate(sp.exp(-2*x),

(x, 0, sp.oo))

The result of the improper integral is:

>>> improper_integral
1/2

Integration of Special Functions

SymPy supports the integration of functions like sin(x) and ex :

Define an expression with special functions
special_expression = sp.sin(x) * sp.exp(x)

Compute the integral
integral_special = sp.integrate(special_expression, x)

The integral of sin(x) · ex is:

>>> integral_special
exp(x)*sin(x)/2 - exp(x)*cos(x)/2

Multiple integrals

To compute ∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dxdx

one can type the following:

Define a multiple integral
multiple_integral = integrate(sp.exp(-x**2 - y**2),

(x, -sp.oo, sp.oo), (y, -sp.oo, sp.oo))

The result will be π.

>>> multiple_integral
pi

Unevaluated Integrals

As with derivatives, we can create unevaluated integrals:

Define unevaluated integral
expr = sp.Integral(x**2, x)

This gives:

>>> expr
Integral(x**2, x)

>>> expr.doit()
x**3/3

Limit Computations

To compute limits, use the limit() function. Example:

Define the variable and expression
expression = sp.sin(x) / x

Compute the limit
limit_result = sp.limit(expression, x, 0)

The limit as x → 0 of sin(x)
x is:

>>> limit_result
1

One-Sided Limits

SymPy can compute one-sided limits using the dir parameter.
Example:

Define the piecewise function
f = sp.Piecewise((x**2, x >= 0), (-x**2, x < 0))

Compute one-sided limits
limit_right = sp.limit(f, x, 0, dir=’+’)
limit_left = sp.limit(f, x, 0, dir=’-’)

The results for the right and left-hand limits are:

>>> limit_right
0

>>> limit_left
0

Multivariate Limits

SymPy can compute multivariate limits. Example:

Define variables and the expression
x, y = sp.symbols(’x y’)
expression = (x**2 + y**2) / (x**2 + 2*y**2)

Compute the multivariate limit
multivariate_limit = sp.limit(expression, x, 0, y, 0)

The result of the multivariate limit is:

>>> multivariate_limit
1/2

Taylor Series Expansion

SymPy can compute Taylor series expansions. Example:

Define the variable and expression
expression = sp.sin(x)

Compute the series expansion
taylor_series = sp.series(expression, x, 0, 6)

Here we take the expansion around 0 up to order 6.
Result:

>>> taylor_series
x - x**3/6 + x**5/120 + O(x**6)

Laurent Series

Laurent series expansions can also be computed. Example:

Define the expression
expression = 1 / (x - 1)

Compute the Laurent series
laurent_series = sp.series(expression, x, 0, 5)

The result of the Laurent series expansion is:

>>> laurent_series
-1/x + O(x)

Asymptotic expansion

Asymptotic expansion is possible at infinity.
For instance, to compute the asymptotic expansion of ln(1 + x) as
x → ∞:

Define the expression
expression = sp.log(1 + x)

Compute the asymptotic expansion
asymptotic_series = sp.series(expression, x, sp.oo, 3)

The result is:

>>> asymptotic_series
log(x) + 1/x - 1/(2*x**2) + O(1/x**3)

Order terms and truncation

▶ Series expansions in SymPy include an O() term, which
represents higher-order terms.

▶ The removeO() method can be used to truncate the series by
removing the O() term.

▶ For example:
Remove the order term
truncated_series = taylor_series.removeO()

The result is:
>>> truncated_series
x - x**3/6 + x**5/120

Defining Differential Equations

Symbolic Representation
▶ Use Eq objects to define equations.
▶ Declare variables and functions beforehand.

import sympy as sp

x = sp.symbols(’x’)
y = sp.Function(’y’)
eq = sp.Eq(sp.Derivative(y(x), x, x) + y(x), 0)

Example: y ′′ + y = 0

>>> eq
Eq(y(x) + Derivative(y(x), (x, 2)), 0)

Functions in SymPy

Using Function class
▶ Functions of one or more variables are represented using the

class Function.

y = sp.symbols(’y’, cls=sp.Function)

▶ Functions allow symbolic differentiation and equation
manipulation.

Importance of Declaring Dependencies
▶ y(x) must be declared as a function of x for:

▶ Derivatives
▶ Symbolic manipulations

Solving Equations

General Solutions with dsolve()
▶ Use dsolve() to solve differential equations symbolically.

solution = sp.dsolve(eq, y(x))

Solution for y ′′ + y = 0:

>>> solution
Eq(y(x), C1*cos(x) + C2*sin(x))

Extracting and Manipulating Solutions

▶ Extract LHS and RHS:

>>> solution.lhs
y(x)

>>> solution.rhs
C1*sin(x) + C2*cos(x)

▶ Substitute constants:

>>> solution.rhs.subs({’C1’: 1, ’C2’: 2})
sin(x) + 2*cos(x)

Verifying Solutions

Using checkodesol()
▶ Verify that a solution satisfies the original equation:

check_result = sp.checkodesol(eq, solution)

Output:

>>> check_result
(True, 0)

Initial Conditions and Boundary Value Problems

Solving with Initial Conditions
▶ Example: Solve y ′′ + y = 0 with:

▶ y(0) = 1
▶ y ′(0) = 0

solution_ic = sp.dsolve(eq, y(x), ics={y(0): 1,
y(x).diff(x).subs(x, 0): 0})

Result:

>>> solution_ic
Eq(y(x), cos(x))

Plotting Solutions

We can then plot using lambdify:

import numpy as np
import matplotlib.pyplot as plt

x_vals = np.linspace(0, 10, 500)
sol_func_ic = sp.lambdify(x, solution_ic.rhs, ’numpy’)
y_vals = sol_func_ic(x_vals)

plt.plot(x_vals, y_vals, label=’$y(x) = \cos(x)$’)
plt.xlabel(’x’)
plt.ylabel(’y(x)’)
plt.title(’Solution with Initial Conditions’)
plt.legend()
plt.grid()
plt.show()

Plotting Solutions

Systems of ODEs

Solving Coupled Equations
▶ Example System:

y ′1 = y2, y ′2 = −y1

y1, y2 = sp.symbols(’y1 y2’, cls=sp.Function)
eq1 = sp.Eq(y1(x).diff(x), y2(x))
eq2 = sp.Eq(y2(x).diff(x), -y1(x))
solution_system = sp.dsolve([eq1, eq2])

Solution:

>>> solution_system
[Eq(y1(x), C1*sin(x) + C2*cos(x)),

Eq(y2(x), C1*cos(x) - C2*sin(x))]

Partial Differential Equations (PDEs)

Defining PDEs
▶ Example: First-order linear PDE:

2
∂u

∂x
+ 3

∂u

∂y
= 5

x, y = sp.symbols(’x y’)
u = sp.Function(’u’)(x, y)
pde = sp.Eq(2 * sp.Derivative(u, x)

+ 3 * sp.Derivative(u, y), 5)

Partial Differential Equations (PDEs)

Solving PDEs
▶ Use pdsolve():

solution = sp.pdsolve(pde)

General solution:

>>> solution
Eq(u(x, y), 10*x/13 + 15*y/13 + F(3*x - 2*y))

Here F is an unknown function.

Adding Initial Conditions to PDEs

▶ Example: Given u(x , 0) = x2:

u0 = x**2
specific_condition = solution.subs(y, 0).rhs - u0
F_general = sp.simplify(specific_condition)

Particular solution:

>>> F_general
-x**2 + 10*x/13 + F(3*x)

The meaning of this is that

−x2 +
10x
13

+ F (3x) = 0.

We can then substitute F back into the general solution to obtain
the particular solution.

	Calculus
	Symbolic Differentiation
	Symbolic Integration
	Limit Computations
	Series Expansion
	Differential equations

