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Basic Differentiation

SymPy can perform differentiation of mathematical expressions
symbolically. This is useful for obtaining exact representations of
derivatives.

# Define symbols and an expression
x, y = sp.symbols(’x y’)
expression = x**2 + sp.sin(x*y)

# Compute the partial derivative with respect to x
derivative_x = sp.diff(expression, x)

# Compute the partial derivative with respect to y
derivative_y = sp.diff(expression, y)



Basic Differentiation Result

The partial derivative with respect to x is 2x + y , and the partial
derivative with respect to y is x cos(xy).

>>> derivative_x
2*x + y*cos(x*y)

>>> derivative_y
x*cos(x*y)



Higher-Order Differentiation

For higher-order derivatives, you can either pass the variable
multiple times or use the number of derivatives. Example:

>>> sp.diff(x**5, x, x)
20*x**3

>>> sp.diff(x**5, x, 2)
20*x**3



Mixed Partial Derivatives

SymPy also computes mixed partial derivatives.

>>> x, y, z = sp.symbols(’x y z’)
>>> sp.diff(sp.exp(x*y*z), x, y, y, z, z)

x*(x**3*y**3*z**3 + 8*x**2*y**2*z**2 + 14*x*y*z + 4)
*exp(x*y*z)



Symmetry of second derivatives

Theorem (Young’s theorem)
Exchanging the order of partial derivatives of a twice-differentiable
multivariate function

f (x1, x2, . . . , xn)

does not change the result. That is, the second-order partial
derivatives satisfy the identities
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Implicit functions

▶ An implicit function is defined by an equation of the form
F (x , y) = 0, where F is a function of two variables, and y is
implicitly related to x .

▶ Unlike explicit functions, where y is expressed directly in terms
of x , implicit functions require solving the equation
F (x , y) = 0 to determine y as a function of x .

▶ In many cases, it is challenging or impossible to express y
explicitly, yet the implicit function theorem guarantees the
existence of y as a differentiable function of x under certain
conditions.



Implicit Differentiation

To differentiate an implicit function, we apply implicit
differentiation. Taking the total derivative of F (x , y) with respect
to x , we use the chain rule:
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Rearranging, we solve for dy
dx :
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provided that ∂F
∂y ̸= 0. This allows us to compute the derivative

without explicitly solving for y .



Implicit Differentiation

To differentiate implicit functions, use SymPy’s idiff() function.
Example:

# Define an implicit equation
implicit_eq = x**5 + y**2 + z**4 - 8*x*y*z

# Differentiate implicitly
implicit_derivative = sp.idiff(implicit_eq, y, x)



Implicit Differentiation Result

The derivative of y with respect to x is:

>>> implicit_derivative
(5*x**4/2 - 4*y*z)/(4*x*z - y)

>>> implicit_derivative.simplify()
(5*x**4 - 8*y*z)/(2*(4*x*z - y))



Unevaluated Derivatives
You can also create unevaluated derivatives using the Derivative
class. Example:

# Create an unevaluated derivative
deriv = sp.Derivative(sp.exp(x*y*z), x, y, 2, z, 2)

Result:

>>> deriv
Derivative(exp(x*y*z), x, (y, 2), (z, 2))

We get nicer result if we initialize pretty printing:



Unevaluated Derivative

▶ Unevalutated derivatives can be useful when we want to
perform complex operations.

▶ To evaluate the derivative, use the doit() function:
>>> deriv.doit()
x*(x**3*y**3*z**3 + 8*x**2*y**2*z**2 + 14*x*y*z + 4)

*exp(x*y*z)



Antiderivatives

SymPy supports symbolic integration. Here’s an example of
computing an indefinite integral:

# Define a simple expression
expression = x**2 + sp.sin(x)

# Compute the indefinite integral
indefinite_integral = sp.integrate(expression, x)

Result:

>>> indefinite_integral
x**3/3 - cos(x)



Definite Integration

For definite integrals, you can specify the limits:

# Define the limits of integration
lower_limit = 0
upper_limit = sp.pi

# Compute the definite integral
definite_integral =

sp.integrate(expression, (x, lower_limit, upper_limit))

The result of the definite integral from 0 to π is:

>>> definite_integral
2 + pi**3/3



Improper Integrals

To compute improper integrals, use oo to denote infinity:

# Define an improper integral
improper_integral = sp.integrate(sp.exp(-2*x),

(x, 0, sp.oo))

The result of the improper integral is:

>>> improper_integral
1/2



Integration of Special Functions

SymPy supports the integration of functions like sin(x) and ex :

# Define an expression with special functions
special_expression = sp.sin(x) * sp.exp(x)

# Compute the integral
integral_special = sp.integrate(special_expression, x)

The integral of sin(x) · ex is:

>>> integral_special
exp(x)*sin(x)/2 - exp(x)*cos(x)/2



Multiple integrals

To compute ∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dxdx

one can type the following:

# Define a multiple integral
multiple_integral = integrate(sp.exp(-x**2 - y**2),

(x, -sp.oo, sp.oo), (y, -sp.oo, sp.oo))

The result will be π.

>>> multiple_integral
pi



Unevaluated Integrals

As with derivatives, we can create unevaluated integrals:

# Define unevaluated integral
expr = sp.Integral(x**2, x)

This gives:

>>> expr
Integral(x**2, x)

>>> expr.doit()
x**3/3



Limit Computations

To compute limits, use the limit() function. Example:

# Define the variable and expression
expression = sp.sin(x) / x

# Compute the limit
limit_result = sp.limit(expression, x, 0)

The limit as x → 0 of sin(x)
x is:

>>> limit_result
1



One-Sided Limits

SymPy can compute one-sided limits using the dir parameter.
Example:

# Define the piecewise function
f = sp.Piecewise((x**2, x >= 0), (-x**2, x < 0))

# Compute one-sided limits
limit_right = sp.limit(f, x, 0, dir=’+’)
limit_left = sp.limit(f, x, 0, dir=’-’)

The results for the right and left-hand limits are:

>>> limit_right
0

>>> limit_left
0



Multivariate Limits

SymPy can compute multivariate limits. Example:

# Define variables and the expression
x, y = sp.symbols(’x y’)
expression = (x**2 + y**2) / (x**2 + 2*y**2)

# Compute the multivariate limit
multivariate_limit = sp.limit(expression, x, 0, y, 0)

The result of the multivariate limit is:

>>> multivariate_limit
1/2



Taylor Series Expansion

SymPy can compute Taylor series expansions. Example:

# Define the variable and expression
expression = sp.sin(x)

# Compute the series expansion
taylor_series = sp.series(expression, x, 0, 6)

Here we take the expansion around 0 up to order 6.
Result:

>>> taylor_series
x - x**3/6 + x**5/120 + O(x**6)



Laurent Series

Laurent series expansions can also be computed. Example:

# Define the expression
expression = 1 / (x - 1)

# Compute the Laurent series
laurent_series = sp.series(expression, x, 0, 5)

The result of the Laurent series expansion is:

>>> laurent_series
-1/x + O(x)



Asymptotic expansion

Asymptotic expansion is possible at infinity.
For instance, to compute the asymptotic expansion of ln(1 + x) as
x → ∞:

# Define the expression
expression = sp.log(1 + x)

# Compute the asymptotic expansion
asymptotic_series = sp.series(expression, x, sp.oo, 3)

The result is:

>>> asymptotic_series
log(x) + 1/x - 1/(2*x**2) + O(1/x**3)



Order terms and truncation

▶ Series expansions in SymPy include an O() term, which
represents higher-order terms.

▶ The removeO() method can be used to truncate the series by
removing the O() term.

▶ For example:
# Remove the order term
truncated_series = taylor_series.removeO()

The result is:
>>> truncated_series
x - x**3/6 + x**5/120



Defining Differential Equations

Symbolic Representation
▶ Use Eq objects to define equations.
▶ Declare variables and functions beforehand.

import sympy as sp

x = sp.symbols(’x’)
y = sp.Function(’y’)
eq = sp.Eq(sp.Derivative(y(x), x, x) + y(x), 0)

Example: y ′′ + y = 0

>>> eq
Eq(y(x) + Derivative(y(x), (x, 2)), 0)



Functions in SymPy

Using Function class
▶ Functions of one or more variables are represented using the

class Function.

y = sp.symbols(’y’, cls=sp.Function)

▶ Functions allow symbolic differentiation and equation
manipulation.

Importance of Declaring Dependencies
▶ y(x) must be declared as a function of x for:

▶ Derivatives
▶ Symbolic manipulations



Solving Equations

General Solutions with dsolve()
▶ Use dsolve() to solve differential equations symbolically.

solution = sp.dsolve(eq, y(x))

Solution for y ′′ + y = 0:

>>> solution
Eq(y(x), C1*cos(x) + C2*sin(x))



Extracting and Manipulating Solutions

▶ Extract LHS and RHS:

>>> solution.lhs
y(x)

>>> solution.rhs
C1*sin(x) + C2*cos(x)

▶ Substitute constants:

>>> solution.rhs.subs({’C1’: 1, ’C2’: 2})
sin(x) + 2*cos(x)



Verifying Solutions

Using checkodesol()
▶ Verify that a solution satisfies the original equation:

check_result = sp.checkodesol(eq, solution)

Output:

>>> check_result
(True, 0)



Initial Conditions and Boundary Value Problems

Solving with Initial Conditions
▶ Example: Solve y ′′ + y = 0 with:

▶ y(0) = 1
▶ y ′(0) = 0

solution_ic = sp.dsolve(eq, y(x), ics={y(0): 1,
y(x).diff(x).subs(x, 0): 0})

Result:

>>> solution_ic
Eq(y(x), cos(x))



Plotting Solutions

We can then plot using lambdify:

import numpy as np
import matplotlib.pyplot as plt

x_vals = np.linspace(0, 10, 500)
sol_func_ic = sp.lambdify(x, solution_ic.rhs, ’numpy’)
y_vals = sol_func_ic(x_vals)

plt.plot(x_vals, y_vals, label=’$y(x) = \cos(x)$’)
plt.xlabel(’x’)
plt.ylabel(’y(x)’)
plt.title(’Solution with Initial Conditions’)
plt.legend()
plt.grid()
plt.show()



Plotting Solutions



Systems of ODEs

Solving Coupled Equations
▶ Example System:

y ′1 = y2, y ′2 = −y1

y1, y2 = sp.symbols(’y1 y2’, cls=sp.Function)
eq1 = sp.Eq(y1(x).diff(x), y2(x))
eq2 = sp.Eq(y2(x).diff(x), -y1(x))
solution_system = sp.dsolve([eq1, eq2])

Solution:

>>> solution_system
[Eq(y1(x), C1*sin(x) + C2*cos(x)),

Eq(y2(x), C1*cos(x) - C2*sin(x))]



Partial Differential Equations (PDEs)

Defining PDEs
▶ Example: First-order linear PDE:

2
∂u

∂x
+ 3

∂u

∂y
= 5

x, y = sp.symbols(’x y’)
u = sp.Function(’u’)(x, y)
pde = sp.Eq(2 * sp.Derivative(u, x)

+ 3 * sp.Derivative(u, y), 5)



Partial Differential Equations (PDEs)

Solving PDEs
▶ Use pdsolve():

solution = sp.pdsolve(pde)

General solution:

>>> solution
Eq(u(x, y), 10*x/13 + 15*y/13 + F(3*x - 2*y))

Here F is an unknown function.



Adding Initial Conditions to PDEs

▶ Example: Given u(x , 0) = x2:

u0 = x**2
specific_condition = solution.subs(y, 0).rhs - u0
F_general = sp.simplify(specific_condition)

Particular solution:

>>> F_general
-x**2 + 10*x/13 + F(3*x)

The meaning of this is that

−x2 +
10x
13

+ F (3x) = 0.

We can then substitute F back into the general solution to obtain
the particular solution.
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