Calculus and Diffy Q's

Ádám Gyenge

Basic Differentiation

SymPy can perform differentiation of mathematical expressions symbolically. This is useful for obtaining exact representations of derivatives.

Define symbols and an expression
x, y = sp.symbols('x y')
expression = x**2 + sp.sin(x*y)

Compute the partial derivative with respect to x
derivative_x = sp.diff(expression, x)

Compute the partial derivative with respect to y
derivative_y = sp.diff(expression, y)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The partial derivative with respect to x is 2x + y, and the partial derivative with respect to y is $x \cos(xy)$.

>>> derivative_x
2*x + y*cos(x*y)

```
>>> derivative_y
x*cos(x*y)
```

For higher-order derivatives, you can either pass the variable multiple times or use the number of derivatives. Example:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
>>> sp.diff(x**5, x, x)
20*x**3
```

```
>>> sp.diff(x**5, x, 2)
20*x**3
```

SymPy also computes mixed partial derivatives.

>>> x, y, z = sp.symbols('x y z')
>>> sp.diff(sp.exp(x*y*z), x, y, y, z, z)

Symmetry of second derivatives

Theorem (Young's theorem)

Exchanging the order of partial derivatives of a twice-differentiable multivariate function

$$f(x_1, x_2, \ldots, x_n)$$

does not change the result. That is, the second-order partial derivatives satisfy the identities

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Implicit functions

- An *implicit function* is defined by an equation of the form F(x, y) = 0, where F is a function of two variables, and y is implicitly related to x.
- Unlike explicit functions, where y is expressed directly in terms of x, implicit functions require solving the equation F(x, y) = 0 to determine y as a function of x.
- In many cases, it is challenging or impossible to express y explicitly, yet the implicit function theorem guarantees the existence of y as a differentiable function of x under certain conditions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Implicit Differentiation

To differentiate an implicit function, we apply implicit differentiation. Taking the total derivative of F(x, y) with respect to x, we use the chain rule:

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0.$$

Rearranging, we solve for $\frac{dy}{dx}$:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}},$$

provided that $\frac{\partial F}{\partial y} \neq 0$. This allows us to compute the derivative without explicitly solving for *y*.

To differentiate implicit functions, use SymPy's idiff() function. Example:

Define an implicit equation
implicit_eq = x**5 + y**2 + z**4 - 8*x*y*z

Differentiate implicitly
implicit_derivative = sp.idiff(implicit_eq, y, x)

The derivative of y with respect to x is:

>>> implicit_derivative
(5*x**4/2 - 4*y*z)/(4*x*z - y)

>>> implicit_derivative.simplify()
(5*x**4 - 8*y*z)/(2*(4*x*z - y))

Unevaluated Derivatives

You can also create unevaluated derivatives using the Derivative class. Example:

Create an unevaluated derivative
deriv = sp.Derivative(sp.exp(x*y*z), x, y, 2, z, 2)
Result:

>>> deriv Derivative(exp(x*y*z), x, (y, 2), (z, 2))

We get nicer result if we initialize pretty printing:

)

Unevaluated Derivative

 Unevalutated derivatives can be useful when we want to perform complex operations.

```
To evaluate the derivative, use the doit() function:
>>> deriv.doit()
x*(x**3*y**3*z**3 + 8*x**2*y**2*z**2 + 14*x*y*z + 4)
*exp(x*y*z)
```

Antiderivatives

SymPy supports symbolic integration. Here's an example of computing an indefinite integral:

```
# Define a simple expression
expression = x**2 + sp.sin(x)
```

Compute the indefinite integral indefinite_integral = sp.integrate(expression, x)

Result:

```
>>> indefinite_integral
x**3/3 - cos(x)
```

Definite Integration

For definite integrals, you can specify the limits:

```
# Define the limits of integration
lower_limit = 0
upper_limit = sp.pi
```

```
# Compute the definite integral
definite_integral =
    sp.integrate(expression, (x, lower_limit, upper_limit))
```

The result of the definite integral from 0 to π is:

```
>>> definite_integral
2 + pi**3/3
```

To compute improper integrals, use oo to denote infinity:

The result of the improper integral is:

```
>>> improper_integral
1/2
```

Integration of Special Functions

SymPy supports the integration of functions like sin(x) and e^x :

```
# Define an expression with special functions
special_expression = sp.sin(x) * sp.exp(x)
```

```
# Compute the integral
integral_special = sp.integrate(special_expression, x)
```

The integral of $sin(x) \cdot e^x$ is:

```
>>> integral_special
exp(x)*sin(x)/2 - exp(x)*cos(x)/2
```

Multiple integrals

To compute

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} \mathrm{d}x \mathrm{d}x$$

one can type the following:

The result will be π .

```
>>> multiple_integral
pi
```

Unevaluated Integrals

As with derivatives, we can create unevaluated integrals:

```
# Define unevaluated integral
expr = sp.Integral(x**2, x)
```

This gives:

```
>>> expr
Integral(x**2, x)
```

```
>>> expr.doit()
x**3/3
```

Limit Computations

To compute limits, use the limit() function. Example:

```
# Define the variable and expression
expression = sp.sin(x) / x
```

```
# Compute the limit
limit_result = sp.limit(expression, x, 0)
The limit as x \rightarrow 0 of \frac{\sin(x)}{x} is:
>>> limit_result
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One-Sided Limits

SymPy can compute one-sided limits using the dir parameter. Example:

Define the piecewise function
f = sp.Piecewise((x**2, x >= 0), (-x**2, x < 0))</pre>

```
# Compute one-sided limits
limit_right = sp.limit(f, x, 0, dir='+')
limit_left = sp.limit(f, x, 0, dir='-')
```

The results for the right and left-hand limits are:

```
>>> limit_right
0
```

```
>>> limit_left
0
```

Multivariate Limits

SymPy can compute multivariate limits. Example:

Define variables and the expression
x, y = sp.symbols('x y')
expression = (x**2 + y**2) / (x**2 + 2*y**2)

Compute the multivariate limit multivariate_limit = sp.limit(expression, x, 0, y, 0)

The result of the multivariate limit is:

```
>>> multivariate_limit
1/2
```

Taylor Series Expansion

SymPy can compute Taylor series expansions. Example:

```
# Define the variable and expression
expression = sp.sin(x)
```

```
# Compute the series expansion
taylor_series = sp.series(expression, x, 0, 6)
```

Here we take the expansion around 0 up to order 6. Result:

```
>>> taylor_series
x - x**3/6 + x**5/120 + O(x**6)
```

Laurent Series

Laurent series expansions can also be computed. Example:

```
# Define the expression
expression = 1 / (x - 1)
```

Compute the Laurent series
laurent_series = sp.series(expression, x, 0, 5)

The result of the Laurent series expansion is:

```
>>> laurent_series
-1/x + O(x)
```

Asymptotic expansion

Asymptotic expansion is possible at infinity. For instance, to compute the asymptotic expansion of $\ln(1+x)$ as $x \to \infty$:

```
# Define the expression
expression = sp.log(1 + x)
```

Compute the asymptotic expansion
asymptotic_series = sp.series(expression, x, sp.oo, 3)

The result is:

```
>>> asymptotic_series
log(x) + 1/x - 1/(2*x**2) + 0(1/x**3)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Order terms and truncation

Series expansions in SymPy include an O() term, which represents higher-order terms.

The removeO() method can be used to truncate the series by removing the O() term.

For example:

Remove the order term
truncated_series = taylor_series.removeO()

The result is:

>>> truncated_series

x - x**3/6 + x**5/120

Defining Differential Equations

Symbolic Representation

- Use Eq objects to define equations.
- Declare variables and functions beforehand.

```
import sympy as sp

x = sp.symbols('x')

y = sp.Function('y')

eq = sp.Eq(sp.Derivative(y(x), x, x) + y(x), 0)

Example: y'' + y = 0

>>> eq

Eq(y(x) + Derivative(y(x), (x, 2)), 0)
```

Functions in SymPy

Using Function class

 Functions of one or more variables are represented using the class Function.

- y = sp.symbols('y', cls=sp.Function)
 - Functions allow symbolic differentiation and equation manipulation.

Importance of Declaring Dependencies

- y(x) must be declared as a function of x for:
 - Derivatives
 - Symbolic manipulations

Solving Equations

General Solutions with dsolve()

Use dsolve() to solve differential equations symbolically.

solution = sp.dsolve(eq, y(x))

```
Solution for y'' + y = 0:
```

>>> solution Eq(y(x), C1*cos(x) + C2*sin(x)) Extracting and Manipulating Solutions

Extract LHS and RHS:

>>> solution.lhs
y(x)

>>> solution.rhs
C1*sin(x) + C2*cos(x)

Substitute constants:

>>> solution.rhs.subs({'C1': 1, 'C2': 2})
sin(x) + 2*cos(x)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Using checkodesol()

Verify that a solution satisfies the original equation:

check_result = sp.checkodesol(eq, solution)

Output:

>>> check_result
(True, 0)

Initial Conditions and Boundary Value Problems

Solving with Initial Conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Result:

>>> solution_ic
Eq(y(x), cos(x))

Plotting Solutions

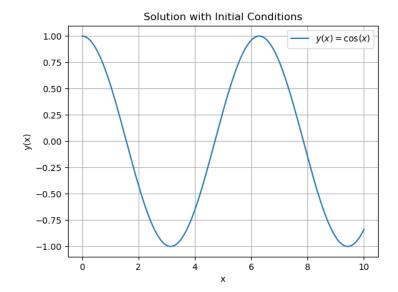
We can then plot using lambdify:

```
import numpy as np
import matplotlib.pyplot as plt
```

```
x_vals = np.linspace(0, 10, 500)
sol_func_ic = sp.lambdify(x, solution_ic.rhs, 'numpy')
y_vals = sol_func_ic(x_vals)
```

```
plt.plot(x_vals, y_vals, label='$y(x) = \cos(x)$')
plt.xlabel('x')
plt.ylabel('y(x)')
plt.title('Solution with Initial Conditions')
plt.legend()
plt.grid()
plt.show()
```

Plotting Solutions



(ロ)、(型)、(E)、(E)、 E) のQ(()

Systems of ODEs

Solving Coupled Equations

Example System:

$$y_1' = y_2, \quad y_2' = -y_1$$

y1, y2 = sp.symbols('y1 y2', cls=sp.Function)
eq1 = sp.Eq(y1(x).diff(x), y2(x))
eq2 = sp.Eq(y2(x).diff(x), -y1(x))
solution_system = sp.dsolve([eq1, eq2])

Solution:

Partial Differential Equations (PDEs)

Defining PDEs

Example: First-order linear PDE:

$$2\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 5$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Partial Differential Equations (PDEs)

Solving PDEs

Use pdsolve():

```
solution = sp.pdsolve(pde)
```

General solution:

>>> solution Eq(u(x, y), 10*x/13 + 15*y/13 + F(3*x - 2*y))

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Here F is an unknown function.

Adding Initial Conditions to PDEs

• Example: Given
$$u(x,0) = x^2$$
:

```
u0 = x**2
specific_condition = solution.subs(y, 0).rhs - u0
F_general = sp.simplify(specific_condition)
```

Particular solution:

>>> F_general -x**2 + 10*x/13 + F(3*x)

The meaning of this is that

$$-x^2 + \frac{10x}{13} + F(3x) = 0.$$

We can then substitute F back into the general solution to obtain the particular solution.