
Algebra with SymPy

Ádám Gyenge

Outline

Linear Algebra

Solving Equations

Gröbner Bases

Rings, Ideals, and Modules

Number Theory

Defining Matrices in SymPy

▶ SymPy provides the Matrix class for defining and
manipulating matrices.

▶ Entries can be numbers, symbols, expressions, etc.:

Define symbols

a, b, c, d = sp.symbols(’a b c d’)

Define symbolic matrices

M = sp.Matrix([[a, b],

[c, d]])

N = sp.Matrix([[0, 1],

[1, 0]])

▶ Results in M =

[
a b
c d

]
and N =

[
0 1
1 0

]
.

Matrix Operations in SymPy

▶ SymPy supports the usual matrix operations.

▶ Examples:

Transpose of a matrix

M.T

Output: Matrix([[a, c], [b, d]])

Scalar multiplication

2 * M

Output: Matrix([[2*a, 2*b], [2*c, 2*d]])

Element-wise addition

M + N

Output: Matrix([[a, b + 1], [c + 1, d]])

Matrix Multiplication and Determinant

▶ Multiplication of matrices:

M * N

Output: Matrix([[b, a], [d, c]])

▶ Compute determinant:

M.det()

Output: a*d - b*c

Matrix Inversion and Eigenvalues

▶ Compute inverse if the determinant is non-zero:

M.inv()

Output: Matrix([

[d/(a*d - b*c), -b/(a*d - b*c)],

[-c/(a*d - b*c), a/(a*d - b*c)]])

▶ Eigenvalues and eigenvectors:

M.eigenvals()

M.eigenvects()

Solving Equations with SymPy

▶ Use Eq for defining equations.

▶ Use solve() for solving algebraic equations.

▶ For example, consider a quadratic equation

x = sp.symbols(’x’)

equation = sp.Eq(x**2 - 5*x + 6, 0)

solution = sp.solve(equation, x)

Output: [2, 3]

Systems of Equations

▶ We can also solve systems of linear equations:

x, y = sp.symbols(’x y’)

equations = (sp.Eq(2*x + y, 10), sp.Eq(3*x - y, 5))

solution = sp.solve(equations, (x, y))

Output: {x: 3, y: 4}

Nonlinear equations

SymPy can also be used to solve some nonlinear equations.
For example, consider solving the following example:

Define a nonlinear equation: x^3 - 6x^2 + 11x - 6 = 0

equation = sp.Eq(x**3 - 6*x**2 + 11*x - 6, 0)

Solve the nonlinear equation

solution = sp.solve(equation, x)

Here the cubic equation x3 − 6x2 + 11x − 6 = 0 is solved, and the
roots of the equation are x = 1, x = 2, and x = 3.

>>> solution

[1, 2, 3]

Trigonometric Equations

Here’s an example of solving a simple trigonometric equation:

Define the trigonometric equation: sin(x) = 0

equation = sp.Eq(sp.sin(x), 0)

Solve the trigonometric equation

solution = sp.solve(equation, x)

In this case, the equation sin(x) = 0 is solved, and the solutions
are x = 0 and x = π.

>>> solution

[0, pi]

Ideals

Let (R,+, ·) be a (commutative) ring with 1.

Definition
A subset I ⊆ R is an ideal if it is a subgroup for + and has the
property aI ⊆ I for all a ∈ R. That is, x ∈ I and a ∈ R implies
ax ∈ I .

▶ The quotient group R/I inherits a uniquely defined
multiplication from R which makes it into a ring.

▶ The mapping
ϕ : R → R/I , a 7→ a+ I

is a surjective ring homomorphism

▶ Fact: There is a one-to-one order preserving correspondence
between ideals J of R that contain I , and ideals J of R/I
given by J = ϕ−1(J).

Generators

▶ Generating Set: An ideal I can be expressed as:

I = ⟨f1, f2, . . . , fk⟩ =

{
k∑

i=1

ri fi | ri ∈ R

}
.

▶ Principal Ideal: If an ideal I has a single generator f , it is
called a principal ideal:

I = ⟨f ⟩ = {r · f | r ∈ R}.

Example: In Z, 4Z = {4k | k ∈ Z} is a principal ideal
generated by 4.

Gröbner Bases

Let R = k[x1, x2, . . . , xn] be a polynomial ring over a field k with n
variables.

Definition (Buchberger, 1960s)

A Gröbner basis for an ideal I ⊆ R is a finite generating set
G = {g1, g2, . . . , gt} ⊆ I such that the leading term of any
polynomial in I (with respect to a chosen monomial order) is
divisible by the leading term of some gi in G . Formally, this means
that for every f ∈ I , if LT(f) denotes the leading term of f , then
there exists gi ∈ G such that LT(gi) | LT(f).

Gröbner Bases in Sympy

The groebner() method provides functions to compute Gröbner
bases and perform related operations. Example:

Define variables

x, y, z = sp.symbols(’x y z’)

Define a system of polynomial equations

equations = [x**2 + y**2 - 1, x*y - z**2]

Compute Groebner basis

gb = sp.groebner(equations)

Gröbner Bases in Sympy

The result is an object of type GroebnerBasis storing the
elements of the basis of the ideal generated by the input
polynomials as well as other data used or obtained during the
computation:

>>> gb

GroebnerBasis([x**2 + y**2 - 1, x*y - z**2,

x*z**2 + y**3 - y, y**4 - y**2 + z**4],

x, y, z, domain=’ZZ’, order=’lex’)

Monomial ordering

Definition
A monomial order is a total order on the set of all (monic)
monomials in a given polynomial ring, satisfying the property of
respecting multiplication: if u ≤ v and w is any monomial, then
uw ≤ vw .

Example

▶ Lexicographic Order (lex): Monomials are ordered
lexicographically, e.g., x2y > xy2 > y3.

▶ Graded Lexicographic Order (grlex): Monomials are
ordered by total degree, with ties resolved lexicographically.

▶ Graded Reverse Lexicographic Order (grevlex):
Monomials are ordered by total degree, with ties resolved
using reverse lexicographic order.

In SymPy, use the argument order of groebner().

Monomial orders in SymPy

Lexicographic order

>>> sp.groebner(equations,order=’lex’)

GroebnerBasis([x**2 + y**2 - 1, x*y - z**2,

x*z**2 + y**3 - y, y**4 - y**2 + z**4],

x, y, z, domain=’ZZ’, order=’lex’)

Graded lexicographic order

>>> sp.groebner(equations,order=’grlex’)

GroebnerBasis([y**4 + z**4 - y**2,

x*z**2 + y**3 - y, x**2 + y**2 - 1, x*y - z**2],

x, y, z, domain=’ZZ’, order=’grlex’)

Graded reverse lexicographic order

>>> sp.groebner(equations,order=’grevlex’)

GroebnerBasis([y**3 + x*z**2 - y,

x**2 + y**2 - 1, x*y - z**2],

x, y, z, domain=’ZZ’, order=’grevlex’)

Applications of Gröbner Bases

▶ Test if a polynomial belongs to an ideal:

f = 2*x**3 + y**3 + 3*y

result = gb.contains(f)

Output: True

▶ Test if an ideal is zero-dimensional:

gb.is_zero_dimensional

Output: True

Rings

In SymPy, the Domain class serves as the base class for
constructing various types of rings.
The following types of domains are available:

1. ZZ for integers

2. QQ for rational

3. GF(p) for finite fields of prime order.

4. RR for real (floating point) numbers.

5. CC for complex (floating point) numbers.

6. QQ(a) for algebraic number fields.

7. K[x] for polynomial rings.

8. K(x) for rational function fields.

9. EX for arbitrary expressions.

Example of rings
For example, we can define the polynomials with integer
coefficients, denoted Z[x], and the ring of polynomials with
rational coefficients, denoted Q[x , y] as follows:

Define variables

x, y = symbols(’x y’)

Define rings

integer_poly_ring = sp.ZZ.old_poly_ring(x)

rational_poly_ring = sp.QQ.old_poly_ring(x, y)

This yields:

>>> integer_poly_ring

ZZ[x]

>>> rational_poly_ring

QQ[x,y]

Methods of Domain

▶ convert(element, target domain): Converts an element
to another domain.

▶ gcd(a, b): Computes the greatest common divisor of two
elements.

▶ lcm(a, b): Computes the least common multiple of two
elements.

▶ is unit(element): Checks if an element is a unit
(invertible).

▶ factor(element): Factors an element into irreducible
components.

▶ add(a, b), mul(a, b), pow(a, n): Performs addition,
multiplication, and exponentiation in the domain.

▶ zero, one: Returns the additive and multiplicative identities,
respectively.

Structural properties
The Domain class also provides methods to determine the
structural properties of algebraic domains, such as:

▶ The is_Field property checks if the domain is a field,
meaning every non-zero element has a multiplicative inverse.

▶ The is_PID property verifies whether the domain is a PID,
where every ideal is generated by a single element.

>>> sp.QQ.is_Field

True

>>> sp.QQ.is_PID

True

>>> sp.ZZ.is_Field

False

>>> sp.ZZ.is_PID

True

Ideals

We can construct an ideal in a ring using the ideal() method. As
arguments, we need to specifying the generators of the ideal:

>>> rational_poly_ring.ideal(y**2-x**3)

<-x**3 + y**2>

The above code creates the ideal ⟨y2 − x3⟩ in the ring Q[x , y].

Operations on ideals
▶ Sum of Ideals:

I + J = {f + g | f ∈ I , g ∈ J}.

The sum I + J is the smallest ideal containing both I and J.

▶ Product of Ideals:

I · J =

{
m∑

k=1

fkgk | fk ∈ I , gk ∈ J,m ∈ N

}
.

The product I · J consists of all finite sums of products of
elements from I and J.

▶ Intersection of Ideals:

I ∩ J = {f ∈ R | f ∈ I and f ∈ J}.

The intersection I ∩ J is the set of all elements common to
both I and J.

Operations on ideals

SymPy also allows computation of common operations involving
ideals:

>>> I_1=rational_poly_ring.ideal(y**2)

>>> I_2=rational_poly_ring.ideal(x**3)

Sum of ideals

>>> I_1+I_2

<y**2,x**3>

Product of ideals

>>> I_1*I_2

<x**3*y**2>

Intersection of ideals

>>> I_1.intersect(I_2)

<x**3*y**2>

Quotient w.r.t an ideal

We can also form the quotient of a ring modulo an ideal. For this,
we use the quotient() method or, simply, the sign /:

>>> rational_poly_ring/[x**2]

QQ[x,y]/<x**2>

Modules
Let R be a ring (commutative, with unity 1R).

Definition
An R-module is a set M equipped with two operations:

▶ Addition: + : M ×M → M, such that M is an abelian group
under +.

▶ Scalar multiplication: · : R ×M → M, satisfying:
▶ r · (x + y) = r · x + r · y for all r ∈ R, x , y ∈ M.
▶ (r + s) · x = r · x + s · x for all r , s ∈ R, x ∈ M.
▶ (r · s) · x = r · (s · x) for all r , s ∈ R, x ∈ M.
▶ 1R · x = x for all x ∈ M.

Intuition: Modules generalize the concept of vector spaces, but
over arbitrary rings instead of fields. Examples:

▶ Zn is a module over Z.
▶ R[x], the ring of polynomials over R, is a module over R.

▶ Vector spaces are modules over fields.

Free modules

An module over a ring R is free if it is isomorphic to Rn for some
n. In SymPy, we can work with free modules and modules
constructed from them.

Defining a free module

free_mod = rational_poly_ring.free_module(4)

Defining a submodule

sub_mod = free_mod.submodule([1,x,y**2,x*y],[0,1,0,x**2])

The result is:

>>> free_mod

QQ[x,y]**4

>>> sub_mod

<[1, x, y**2, x*y], [0, 1, 0, x**2]>

Integers and prime numbers

SymPy offers several utilities for analyzing and generating prime
numbers, as well as factorizing integers into their prime
components.
To check the primality of a number, factorize it, or generate primes
within a range, we use the following:

Check if a number is prime

>>> sp.isprime(17)

True

Factorize an integer

>>> sp.factorint(60)

{2: 2, 3: 1, 5: 1}

Generate prime numbers within a range

list(sp.primerange(10, 30))

[11, 13, 17, 19, 23, 29]

Divisors and modular arithmetic

Find all divisors of an integer

>>> sp.divisors(28)

[1, 2, 4, 7, 14, 28]

Compute modular inverse

>>> sp.mod_inverse(3, 7)

5

Here, divisors lists all divisors of a number, while mod inverse

computes the modular inverse when it exists. Modular inverses are
particularly important in cryptography and solving congruences.
The last result follows from 3 ∗ 5 ≡ 1 (mod 7).

Diophantine equations

Diophantine equations seek integer solutions to polynomial
equations. SymPy’s diophantine function can solve a variety of
such equations, including linear, quadratic, and Pell’s equations.

Define variables

x, y, z = sp.symbols(’x y z’)

Solve a Diophantine equation

solutions = sp.diophantine(x**2 + y**2 - z**2)

Solutions include integer triples representing

Pythagorean triples

Result:

>>> solutions

{(2*p*q, p**2 - q**2, p**2 + q**2)}

Chinese Remainder Theorem

Theorem: Let n1, n2, . . . , nk be pairwise coprime positive integers,
and let N = n1n2 · · · nk . Then for any integers a1, a2, . . . , ak , the
system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has a unique solution modulo N.

Example: Solve x ≡ 2 (mod 3), x ≡ 1 (mod 5), x ≡ 3 (mod 7).

Chinese Remainder Theorem

In SymPy, this is implemented through the crt function.

Solve a system of modular congruences

moduli = [3, 5, 7]

remainders = [2, 1, 3]

solution = sp.crt(moduli, remainders) # (101, 105)

Here, the solution (101, 105) implies that x ≡ 101 mod 105
satisfies the given congruences. The crt function handles both the
solution and the modulus.

	Linear Algebra
	Solving Equations
	Gröbner Bases
	Rings, Ideals, and Modules
	Number Theory

