
Introduction to SageMath
For Python and SymPy Users

Ádám Gyenge

March 17, 2025

Outline

Idea of SageMath

Software Packages Included in SageMath

Sage from the Python programmer’s viewpoint

Plotting

Algebra

Advanced Features

What is SageMath?

▶ Open-source mathematics software system.

▶ Combines many existing open-source packages (Maxima,
GAP, R, etc.).

▶ Provides a unified interface and additional functionality.

▶ Built using Python; enhances Python with advanced math
capabilities.

History of SageMath

▶ 2004: SageMath (originally called SAGE, ”Software for
Algebra and Geometry Experimentation”) was created by
William Stein, a professor at the University of Washington.

▶ Mission: To create a free, open-source alternative to
proprietary mathematical software like Mathematica,
MATLAB, and Maple.

▶ Core Philosophy:
▶ Built on top of existing open-source libraries (e.g., NumPy,

SciPy, Maxima, and R).
▶ Emphasis on transparency, extensibility, and collaboration.

▶ 2005: First public release (Sage 1.0).

▶ 2008: Development of SageMathCloud (now CoCalc),
expanding Sage’s usability in the cloud.

▶ Today: SageMath is widely used in education, research, and
industry, with a vibrant community contributing to its
development.

Key Software Packages in SageMath

▶ Algebra: GAP, Maxima

▶ Number Theory: PARI/GP, FLINT

▶ Geometry: Singular, Polymake

▶ Statistics: R

▶ Graph Theory: NetworkX

▶ Linear Algebra: NumPy, SciPy

Motto of Sage

Building the car instead of reinventing the wheel.

What is CoCalc?

An All-in-One Collaborative Mathematics Platform

▶ CoCalc (formerly SageMathCloud) is an online platform
designed to support SageMath and other computational
tools.

▶ Enables users to perform mathematical computations, write
documents, and collaborate in real time.

▶ Key features:
▶ Access SageMath seamlessly in the cloud.
▶ Collaborative editing of Jupyter notebooks, LaTeX documents,

and more.
▶ Integrated support for Python, R, Julia, and other

programming languages.
▶ Version control for tracking changes.

▶ No Installation Needed: Work directly in your web browser
with computational resources provided by CoCalc servers.

Why Use CoCalc for SageMath?
▶ Ease of Use:

▶ Quickly access SageMath without worrying about local setup
or dependencies.

▶ Intuitive interface tailored for computational mathematics.

▶ Collaboration Tools:
▶ Real-time document sharing for joint problem-solving and

research.
▶ Integrated chat and commenting system for effective

teamwork.

▶ Rich Ecosystem:
▶ Access LaTeX for creating mathematical documents.
▶ Explore Jupyter notebooks for interactive computations.
▶ Use Sage Worksheets for a native SageMath experience.

▶ Flexible Resources:
▶ Scale computational resources based on project needs (free

and paid plans available).
▶ Ideal for educational settings with students needing easy access

to SageMath.

Sage from the Python programmer’s viewpoint

▶ SageMath enhances Python syntax with mathematical
constructs.

▶ In the background, When Sage loads a file, it converts it to
Python, which is then executed by the Python interpreter.

▶ File extension: .sage instead of .py

▶ Sage can also be used in Jupyter.

▶ SymPy: 10 Mb

▶ Sage: 1 Gb

Syntax differences

▶ Power:
Python: 2**3
Sage: 2^3

▶ Symbolic variables are defined using var().
Python: x = sympy.symbols(’x’)

Sage: var(’x’)

▶ Mathematical operations are more intuitive:
Python: sympy.sin(x)
Sage: sin(x)

▶ When used command-line, the prompt starts with
Python: >>>
Sage: sage:

▶ A bunch of packages are loaded automatically.

Data types

Sage adds many types to the Python built-in types. E.g. vector
spaces:

sage: V = VectorSpace(QQ, 1000000); V

Vector space of dimension 1000000 over Rational Field

sage: type(V)

<class ’sage.modules.free_module.

FreeModule_ambient_field_with_category’>

Simplifying Expressions

Python (SymPy):

from sympy import symbols, simplify

x = symbols(’x’)

expr = x**2 - 2*x + 1

simplify(expr)

SageMath:

var(’x’)

expr = x^2 - 2*x + 1

simplify(expr)

Solving Equations

Python (SymPy):

from sympy import Eq, solve

solve(Eq(x**2 - 2, 0), x)

SageMath:

solve(x^2 - 2 == 0, x)

Calculus

Python (SymPy):

from sympy import diff, integrate, sin, exp

diff(sin(x), x)

integrate(exp(x), x)

SageMath:

diff(sin(x), x)

integrate(e^x, x)

Limits

Python (SymPy):

from sympy import limit

limit(sin(x)/x, x, 0)

SageMath:

limit(sin(x)/x, x=0)

Linear Algebra

Define a matrix

A = Matrix([[1, 2], [3, 4]])

Compute determinant

det = A.determinant()

Eigenvalues

eigenvals = A.eigenvalues()

print(det, eigenvals)

Output:

▶ Determinant: −2

▶ Eigenvalues: {5.37,−0.37} (approx.)

Polynomials

R.<x> = PolynomialRing(QQ)

f = x^3 - 3*x^2 + 4*x - 2

factors = f.factor()

print(factors)

Output:

▶ Factors: (x − 1)2(x + 2)

Solving Equations

Solving Equations

▶ Solve algebraic equations symbolically or numerically.

▶ Example: Solving a quadratic equation

Code Example:

var(’x’)

eq = x^2 - 4*x + 3 == 0

solutions = solve(eq, x)

print(solutions)

Output:

▶ Solutions: x = 1, x = 3

Rings

▶ Sage supports abstract algebraic structures, including rings
and modules.

▶ Example: Creating a ring and checking properties

Code Example:

R = Integers(12) # Ring of integers modulo 12

print(R.is_commutative()) # Check if commutative

print(R(5) * R(7)) # Perform multiplication

Output:

▶ Commutative: True

▶ Multiplication: 11 (mod 12)

Plotting in SageMath

▶ The default plotting method in uses the matplotlib package

▶ 2D Plot: plot(sin(x), (x, -2*pi, 2*pi))

▶ 3D Plot: plot3d(x^2 + y^2, (x, -2, 2), (y, -2, 2))

▶ Combine plots: plot(f) + plot(g)

▶ Other plotting libraries can also be used, if installed.

▶ Example: gnuplot

sage: maxima.plot2d(’sin(x)’,’[x,-5,5]’)

Rings

▶ Sage supports ring structures: ZZ, QQ, RR, CC.

▶ Operations: ZZ(3) + ZZ(5).

▶ Modular arithmetic: Mod(7, 3).

Polynomials

▶ Define a polynomial ring: R.<x> = PolynomialRing(QQ).

▶ Operations: Addition, multiplication, division.

▶ GCD: gcd(p1, p2).

Example: Factorize x2 − 2.

Group Theory

Invokes the software package GAP in the bacckground.

▶ Access group libraries: groups.permutation.

▶ Create groups: AbelianGroup(), SymmetricGroup().

▶ Group operations: Multiplication, identity, inverses.

Abelian Groups and Direct Sums

Definition
▶ A group G is abelian if gh = hg for all g , h ∈ G .

▶ The direct sum G ⊕ H of two groups G and H is the
Cartesian product

G × H = {(g , h) : g ∈ G , h ∈ H}

equipped with the group operation

(g1, h1)× (g2, h2) = (g1g2, h1h2)

and unit
(1G , 1H).

Example with SageMath

sage: G = AbelianGroup([2, 3]) # Z/2Z x Z/3Z

sage: print(G)

Multiplicative Abelian group isomorphic to C2 x C3

sage: print(G.is_commutative()) # Check if G is abelian

True

Elements of G

sage: for g in G: print(g)

1

f1

f1^2

f0

f0*f1

f0*f1^2

Normal Subgroups and Quotient Groups

Definition
▶ A subgroup N ≤ G is normal if gNg−1 = N for all g ∈ G .

▶ The quotient group G/N is formed by the cosets of N in G :

G/N = {gN : g ∈ G}

with
g1N · g2N = g1g2N.

Example with SageMath:

G = SymmetricGroup(3) # S_3

N = G.subgroup([(1, 2)]) # A subgroup of S_3

print(N.is_normal(G)) # Check if N is normal

Quotient group

Q = G.quotient(N)

print(Q)

Permutation Groups

Definition
A permutation group acts on a set by permuting its elements.

Example with SageMath:

Define a permutation group generated by cycles

G = PermutationGroup([(1, 2, 3), (4, 5)])

print(G)

Properties of G

print("Order:", G.order())

print("Generators:", G.gens())

Permute an element

sigma = G.gens()[0]

print(sigma(2))

Introduction to Graphs in SageMath

▶ SageMath provides built-in support for graphs and graph
algorithms.

▶ Graphs can be defined using adjacency lists, matrices, or
predefined structures.

▶ Example: Creating a simple graph in SageMath:

G = Graph({1: [2, 3], 2: [3, 4], 3: [4], 4: []})

G.show()

Graph Properties and Visualization

▶ SageMath allows computation of various graph properties:

G.is_connected() # Check if the graph is connected

G.degree(1) # Get the degree of vertex 1

G.diameter() # Compute the graph’s diameter

▶ Graphs can be visualized using different layouts:

G.show(layout=’circular’)

Algorithms on Graphs

▶ SageMath includes many graph algorithms, such as shortest
paths and spanning trees.

▶ Example: Computing shortest path using Dijkstra’s algorithm:

G.shortest_path(1, 4)

▶ Finding a minimum spanning tree:

T = G.minimum_spanning_tree()

T.show()

Graph Coloring and Applications

▶ Graph coloring is useful in scheduling, register allocation, and
networking.

▶ SageMath can compute chromatic numbers and colorings:

G.chromatic_number()

G.coloring()

▶ Example: Coloring a graph:

G.plot(vertex_colors=G.coloring())

Advanced Features

▶ Parallel computing: parallelize.

▶ Custom algorithms: Write Python functions in Sage.

▶ Interfaces to external software (e.g., R, Maxima).

Using SageMath in Python

All functionalities of Sage can be accessed directly from Python.

▶ Install Sage library: pip install sagemath.

▶ Import Sage: from sage.all import *.

▶ Use Sage objects and methods in Python scripts.

Demo: Solve x2 − 2 = 0 in a Python script using Sage.

Conclusion

▶ SageMath extends Python for advanced math tasks.

▶ Unified access to multiple software packages.

▶ Easy integration with Python workflows.

Next Steps: Install SageMath and try out examples!

	Idea of SageMath
	Software Packages Included in SageMath
	Sage from the Python programmer's viewpoint
	Plotting
	Algebra
	Advanced Features

