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What is SageMath?

▶ Open-source mathematics software system.

▶ Combines many existing open-source packages (Maxima,
GAP, R, etc.).

▶ Provides a unified interface and additional functionality.

▶ Built using Python; enhances Python with advanced math
capabilities.



History of SageMath

▶ 2004: SageMath (originally called SAGE, ”Software for
Algebra and Geometry Experimentation”) was created by
William Stein, a professor at the University of Washington.

▶ Mission: To create a free, open-source alternative to
proprietary mathematical software like Mathematica,
MATLAB, and Maple.

▶ Core Philosophy:
▶ Built on top of existing open-source libraries (e.g., NumPy,

SciPy, Maxima, and R).
▶ Emphasis on transparency, extensibility, and collaboration.

▶ 2005: First public release (Sage 1.0).

▶ 2008: Development of SageMathCloud (now CoCalc),
expanding Sage’s usability in the cloud.

▶ Today: SageMath is widely used in education, research, and
industry, with a vibrant community contributing to its
development.



Key Software Packages in SageMath

▶ Algebra: GAP, Maxima

▶ Number Theory: PARI/GP, FLINT

▶ Geometry: Singular, Polymake

▶ Statistics: R

▶ Graph Theory: NetworkX

▶ Linear Algebra: NumPy, SciPy



Motto of Sage

Building the car instead of reinventing the wheel.



What is CoCalc?

An All-in-One Collaborative Mathematics Platform

▶ CoCalc (formerly SageMathCloud) is an online platform
designed to support SageMath and other computational
tools.

▶ Enables users to perform mathematical computations, write
documents, and collaborate in real time.

▶ Key features:
▶ Access SageMath seamlessly in the cloud.
▶ Collaborative editing of Jupyter notebooks, LaTeX documents,

and more.
▶ Integrated support for Python, R, Julia, and other

programming languages.
▶ Version control for tracking changes.

▶ No Installation Needed: Work directly in your web browser
with computational resources provided by CoCalc servers.



Why Use CoCalc for SageMath?
▶ Ease of Use:

▶ Quickly access SageMath without worrying about local setup
or dependencies.

▶ Intuitive interface tailored for computational mathematics.

▶ Collaboration Tools:
▶ Real-time document sharing for joint problem-solving and

research.
▶ Integrated chat and commenting system for effective

teamwork.

▶ Rich Ecosystem:
▶ Access LaTeX for creating mathematical documents.
▶ Explore Jupyter notebooks for interactive computations.
▶ Use Sage Worksheets for a native SageMath experience.

▶ Flexible Resources:
▶ Scale computational resources based on project needs (free

and paid plans available).
▶ Ideal for educational settings with students needing easy access

to SageMath.



Sage from the Python programmer’s viewpoint

▶ SageMath enhances Python syntax with mathematical
constructs.

▶ In the background, When Sage loads a file, it converts it to
Python, which is then executed by the Python interpreter.

▶ File extension: .sage instead of .py

▶ Sage can also be used in Jupyter.

▶ SymPy: 10 Mb

▶ Sage: 1 Gb



Syntax differences

▶ Power:
Python: 2**3
Sage: 2^3

▶ Symbolic variables are defined using var().
Python: x = sympy.symbols(’x’)

Sage: var(’x’)

▶ Mathematical operations are more intuitive:
Python: sympy.sin(x)
Sage: sin(x)

▶ When used command-line, the prompt starts with
Python: >>>
Sage: sage:

▶ A bunch of packages are loaded automatically.



Data types

Sage adds many types to the Python built-in types. E.g. vector
spaces:

sage: V = VectorSpace(QQ, 1000000); V

Vector space of dimension 1000000 over Rational Field

sage: type(V)

<class ’sage.modules.free_module.

FreeModule_ambient_field_with_category’>



Simplifying Expressions

Python (SymPy):

from sympy import symbols, simplify

x = symbols(’x’)

expr = x**2 - 2*x + 1

simplify(expr)

SageMath:

var(’x’)

expr = x^2 - 2*x + 1

simplify(expr)



Solving Equations

Python (SymPy):

from sympy import Eq, solve

solve(Eq(x**2 - 2, 0), x)

SageMath:

solve(x^2 - 2 == 0, x)



Calculus

Python (SymPy):

from sympy import diff, integrate, sin, exp

diff(sin(x), x)

integrate(exp(x), x)

SageMath:

diff(sin(x), x)

integrate(e^x, x)



Limits

Python (SymPy):

from sympy import limit

limit(sin(x)/x, x, 0)

SageMath:

limit(sin(x)/x, x=0)



Linear Algebra

# Define a matrix

A = Matrix([[1, 2], [3, 4]])

# Compute determinant

det = A.determinant()

# Eigenvalues

eigenvals = A.eigenvalues()

print(det, eigenvals)

Output:

▶ Determinant: −2

▶ Eigenvalues: {5.37,−0.37} (approx.)



Polynomials

R.<x> = PolynomialRing(QQ)

f = x^3 - 3*x^2 + 4*x - 2

factors = f.factor()

print(factors)

Output:

▶ Factors: (x − 1)2(x + 2)



Solving Equations

Solving Equations

▶ Solve algebraic equations symbolically or numerically.

▶ Example: Solving a quadratic equation

Code Example:

var(’x’)

eq = x^2 - 4*x + 3 == 0

solutions = solve(eq, x)

print(solutions)

Output:

▶ Solutions: x = 1, x = 3



Rings

▶ Sage supports abstract algebraic structures, including rings
and modules.

▶ Example: Creating a ring and checking properties

Code Example:

R = Integers(12) # Ring of integers modulo 12

print(R.is_commutative()) # Check if commutative

print(R(5) * R(7)) # Perform multiplication

Output:

▶ Commutative: True

▶ Multiplication: 11 (mod 12)



Plotting in SageMath

▶ The default plotting method in uses the matplotlib package

▶ 2D Plot: plot(sin(x), (x, -2*pi, 2*pi))

▶ 3D Plot: plot3d(x^2 + y^2, (x, -2, 2), (y, -2, 2))

▶ Combine plots: plot(f) + plot(g)

▶ Other plotting libraries can also be used, if installed.

▶ Example: gnuplot

sage: maxima.plot2d(’sin(x)’,’[x,-5,5]’)



Rings

▶ Sage supports ring structures: ZZ, QQ, RR, CC.

▶ Operations: ZZ(3) + ZZ(5).

▶ Modular arithmetic: Mod(7, 3).



Polynomials

▶ Define a polynomial ring: R.<x> = PolynomialRing(QQ).

▶ Operations: Addition, multiplication, division.

▶ GCD: gcd(p1, p2).

Example: Factorize x2 − 2.



Group Theory

Invokes the software package GAP in the bacckground.

▶ Access group libraries: groups.permutation.

▶ Create groups: AbelianGroup(), SymmetricGroup().

▶ Group operations: Multiplication, identity, inverses.



Abelian Groups and Direct Sums

Definition
▶ A group G is abelian if gh = hg for all g , h ∈ G .

▶ The direct sum G ⊕ H of two groups G and H is the
Cartesian product

G × H = {(g , h) : g ∈ G , h ∈ H}

equipped with the group operation

(g1, h1)× (g2, h2) = (g1g2, h1h2)

and unit
(1G , 1H).



Example with SageMath

sage: G = AbelianGroup([2, 3]) # Z/2Z x Z/3Z

sage: print(G)

Multiplicative Abelian group isomorphic to C2 x C3

sage: print(G.is_commutative()) # Check if G is abelian

True

# Elements of G

sage: for g in G: print(g)

1

f1

f1^2

f0

f0*f1

f0*f1^2



Normal Subgroups and Quotient Groups

Definition
▶ A subgroup N ≤ G is normal if gNg−1 = N for all g ∈ G .

▶ The quotient group G/N is formed by the cosets of N in G :

G/N = {gN : g ∈ G}

with
g1N · g2N = g1g2N.

Example with SageMath:

G = SymmetricGroup(3) # S_3

N = G.subgroup([(1, 2)]) # A subgroup of S_3

print(N.is_normal(G)) # Check if N is normal

# Quotient group

Q = G.quotient(N)

print(Q)



Permutation Groups

Definition
A permutation group acts on a set by permuting its elements.

Example with SageMath:

# Define a permutation group generated by cycles

G = PermutationGroup([(1, 2, 3), (4, 5)])

print(G)

# Properties of G

print("Order:", G.order())

print("Generators:", G.gens())

# Permute an element

sigma = G.gens()[0]

print(sigma(2))



Introduction to Graphs in SageMath

▶ SageMath provides built-in support for graphs and graph
algorithms.

▶ Graphs can be defined using adjacency lists, matrices, or
predefined structures.

▶ Example: Creating a simple graph in SageMath:

G = Graph({1: [2, 3], 2: [3, 4], 3: [4], 4: []})

G.show()



Graph Properties and Visualization

▶ SageMath allows computation of various graph properties:

G.is_connected() # Check if the graph is connected

G.degree(1) # Get the degree of vertex 1

G.diameter() # Compute the graph’s diameter

▶ Graphs can be visualized using different layouts:

G.show(layout=’circular’)



Algorithms on Graphs

▶ SageMath includes many graph algorithms, such as shortest
paths and spanning trees.

▶ Example: Computing shortest path using Dijkstra’s algorithm:

G.shortest_path(1, 4)

▶ Finding a minimum spanning tree:

T = G.minimum_spanning_tree()

T.show()



Graph Coloring and Applications

▶ Graph coloring is useful in scheduling, register allocation, and
networking.

▶ SageMath can compute chromatic numbers and colorings:

G.chromatic_number()

G.coloring()

▶ Example: Coloring a graph:

G.plot(vertex_colors=G.coloring())



Advanced Features

▶ Parallel computing: parallelize.

▶ Custom algorithms: Write Python functions in Sage.

▶ Interfaces to external software (e.g., R, Maxima).



Using SageMath in Python

All functionalities of Sage can be accessed directly from Python.

▶ Install Sage library: pip install sagemath.

▶ Import Sage: from sage.all import *.

▶ Use Sage objects and methods in Python scripts.

Demo: Solve x2 − 2 = 0 in a Python script using Sage.



Conclusion

▶ SageMath extends Python for advanced math tasks.

▶ Unified access to multiple software packages.

▶ Easy integration with Python workflows.

Next Steps: Install SageMath and try out examples!
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