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Introduction

Topology

From Wikipedia:

Topology (from the Greek words τoπoσ, ’place, location’, and λoγoσ,
’study’) is the branch of mathematics concerned with the properties of a
geometric object that are preserved under continuous deformations, such
as stretching, twisting, crumpling, and bending; that is, without closing
holes, opening holes, tearing, gluing, or passing through itself.
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Introduction

Origins

Euler (1736): Seven bridges of Königsberg

V − E + F = 2
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Connected Components

Graphs and Paths

A graph G consists of vertices (nodes) V and edges (connections) E .

Simple graph: no two edges connect the same two vertices and no
edge joins a vertex to itself

A path in a graph is a sequence of edges connecting a sequence of
vertices.

A graph is connected if there is a path between any two vertices,
otherwise it is disconnected

A (connected) component is a maximal subgraph that is connected.
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Connected Components

Separation and Connectedness

A separation is a non-trivial partition of the vertices, that is,
V = U ⊔W with U,W ̸= ∅, such that no edge connects a vertex in
U with a vertex in W .

A simple graph is connected if it has no separation.

A B

C

D E
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Connected Components

Topological Spaces

A topology on a set X is a collection T of subsets of X , called open sets,
such that

1 X is open and the empty set ∅ is open;

2 if U1 and U2 are open, then U1 ∩ U2 is open;

3 if Ui is open for all i in some possibly infinite, possible uncountable,
index set, then the union of all Ui is open.

Remarks

The pair (X , T ) is a called a topological space, but we will usually
tacitly assume that T is understood and refer to X a topological
space.

Condition (ii) is equivalent to requiring that intersections of finitely
many open sets are open.

closed sets = complement of open sets
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Connected Components

Closure, Interior, and Boundary of a Subset in a
Topological Space

Let (X , T ) be a topological space and A ⊆ X a subset.

Definitions

Closure of A, denoted A: the smallest closed set containing A.

A =
⋂

{U ∈ T : A ⊆ U}.

Interior of A, denoted int(A): the largest open set contained in A.

int(A) =
⋃

{U ∈ T : U ⊆ A}.

Boundary of A, denoted ∂A:

∂A = A \ int(A).
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Connected Components

Examples in R2 with the standard topology

Let A = {(x , y) ∈ R2 : x2 + y2 < 1} (open unit disk):

int(A) = A.
A = {(x , y) : x2 + y2 ≤ 1} (closed unit disk).
∂A = {(x , y) : x2 + y2 = 1} (circle).

∂Aint(A)

A (shaded region)
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Connected Components

Topological Basis

A basis of a topology on a point set X is a collection B of subsets of
X , called basis elements, such that each x ∈ X is contained in at
least one B ∈ B and x ∈ B1 ∩ B2 implies there is a third basis
element with x ∈ B3 ⊆ B1 ∩ B2.

The topology T generated by B consists of all sets U ⊆ X for which
x ∈ U implies there is a basis element x ∈ B ⊆ U. This topology can
be constructed explicitly by taking all possible unions of all possible
finite intersections of basis sets.

Example: The standard topology on R with basis as open intervals
(a, b).
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Connected Components

Examples of Topological Spaces

The Real Line with the Standard Topology:
The set of real numbers R, with the standard topology (open
intervals), is a topological space.

The Sierpiński Space:
A topological space with two points X = {a, b}, and the topology
{∅,X , {a}}, where {a} is open.

Discrete Topology:
Every subset is open.
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Connected Components

Example: Metric Spaces

A metric space is a set M equipped with a distance function
d : M ×M → R satisfying:

1 d(x , y) ≥ 0 with d(x , y) = 0 ⇐⇒ x = y (non-negativity),
2 d(x , y) = d(y , x) (symmetry),
3 d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality).

A metric space induces a topology via the basis of open balls:

Br (p) = {x ∈ M : d(p, x) < r}, r > 0, p ∈ M.

The open sets in this topology are unions of open balls:

U ⊆ M is open if ∀x ∈ U,∃r > 0 such that Br (x) ⊆ U.

Examples

Rn with d(x , y) =
√∑n

i=1(xi − yi )2 (Euclidean metric).

Discrete metric: d(x , y) =

{
0, if x = y ,

1, if x ̸= y .
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Connected Components

Product Topology

Let X =
∏

i∈I Xi be the product of topological spaces {Xi}i∈I , where
I is an index set.

The product topology on X is defined by a basis of open sets.

Basis for the Product Topology

A basis for the product topology consists of all sets of the form:∏
i∈I

Ui

where Ui ⊆ Xi is open, and Ui = Xi for all but finitely many i ∈ I .

In other words, an open set in the product topology is a product of
open sets in each Xi , but only finitely many Ui are non-trivial.
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Connected Components

Examples of Product Spaces 1.

Let X1 = R and X2 = R. The product space X1 × X2 = R2 is
endowed with the product topology.

A basis element in R2 is a set of the form U1 × U2, where U1 ⊆ R
and U2 ⊆ R are open sets.

Torus: The torus T 2 is the product of two circles:

T 2 = S1 × S1

where S1 = R/Z is the unit circle, i.e., the real numbers modulo 1.
The product topology on T 2 is the topology inherited from the
product of two copies of S1, and it represents a 2-dimensional surface
that can be visualized as a doughnut shape.
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Connected Components

Examples of Product Spaces 2.

Cylinder: The cylinder C can be represented as a product space:

C = S1 × R

where S1 is the unit circle and R is the real line. The cylinder is a
2-dimensional surface that extends infinitely in one direction, with circular
cross-sections.
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Connected Components

Subspace Topology

Let X be a topological space and Y ⊆ X .

The subspace topology on Y is defined by U ∩ Y for U ∈ T , where
T is the topology of X .

Example: Subspace topology of [0, 1] ⊂ R inherits open intervals from
R.
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Connected Components

Continuous Maps Between Metric Spaces

Let (X , dX ), (Y , dY ) be metric spaces.

Definition

A map f : (X , dX ) → (Y , dY ) is continuous if ∀ϵ > 0, ∃δ > 0, such that
for all x1, x2 ∈ X , if dX (x1, x2) < δ, then dY (f (x1), f (x2)) < ϵ.

Proposition

A map f is continuous if the preimage of every open subset in Y is open
in X :

∀U ⊆ Y , if U is open, then f −1(U) is open in X
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Connected Components

Continuity

Let (X , TX ), (Y , TY ) be topological spaces.

Definition

A function f : X → Y is continuous if the preimage of every open set in
Y is open in X .

Example: f (x) = x2 from R to R is continuous.
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Connected Components

Paths in Topological Spaces

A path in a topological space is a continuous map γ : [0, 1] → X .

A space is path-connected if any two points can be connected by a
path.

Examples of path-connected spaces: Rn, circles.
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Connected Components

Disjoint Systems

A separation of a topological space X is a partition X = U ⊔W into two
non-empty, open subsets. A topological space is connected if it has no
separation.

Proposition

X path-connected ⇒ X connected

A disjoint system is a collection of disjoint connected components.

Useful for simplifying computations in connectedness analysis.

Example: Forest of trees in a disconnected graph.
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Connected Components

Disjoint-Set data structure

Given a graph, we want to find connected components algorithmically.

Vertices: integers from 1 to n

Components of the graph: subsets of [n] = {1, . . . , n}
Idea:

1 Add the edges one at a time and maintain the system of sets
representing the components

2 We find that the graph is connected iff in the end there is only one
set left, namely [n]
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Connected Components

Disjoint-Set data structure

The Disjoint-Set data structure is used to manage a partition of a set into
disjoint subsets. It supports two main operations:

Find(x): Returns the representative or leader of the set containing
element x .

Union(x, y): Merges the sets containing x and y .

A standard data structure implementing a disjoint set system stores each
set as a tree embedded in a linear array, V [1, . . . , n]. Each node in the tree
is equipped with a pointer to its parent, except for the root which has no
parent.
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Connected Components

Example
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Connected Components

Pseudocode: Find Operation

Find(x):

if parent[x] != null:

return Find(parent[x])

else

return x

If i is not the root then we find the root recursively and finally return it.
Otherwise, we return i as the root.
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Connected Components

Pseudocode: Union Operation

Union(x, y):

rootX = Find(x)

rootY = Find(y)

if rootX != rootY:

parent[rootX] = rootY

After making sure that the two sets are different, we assign one root as
the parent of the other.
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Curves in the Plane

Closed Curves

A closed curve is a continuous function γ : [0, 1] → R2 with
γ(0) = γ(1).

Equivalently, it is a map from the unit circle, γ : S1 → X , where
S1 = x ∈ R2 : |x | = 1.
Examples:

Circle: γ(t) = (cos(2πt), sin(2πt)).
Ellipse: γ(t) = (a cos(2πt), b sin(2πt)).

Interior

Exterior
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Curves in the Plane

Homeomorphisms

We call two topological spaces homeomorphic or topologically
equivalent if there exists a continuous bijection from one space to the
other whose inverse is also continuous.
A map with these properties is called a homeomorphism.

Claim

The unit interval and the unit circle are not homeomorphic.

Proof.

Removing the midpoint decomposes the interval into two components
while removing its image leaves the circle connected. This contradicts the
existence of a bijection that is continuous in both directions.
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Curves in the Plane

Jordan Curve Theorem I

A simple closed curve is a curve without self-intersections, that is, a
continuous injection γ : S1 → R2.

Theorem (Jordan Curve Theorem)

Removing the image of a simple closed curve from R2 leaves two
connected component:

Interior (inside): A bounded region.

Exterior (outside): An unbounded region.

The inside together with the image of the curve is homeomorphic to a
closed disk.

Corollary

Any continuous path connecting points from the interior and exterior must
cross the curve.
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Curves in the Plane

Jordan Curve Theorem II

Remains valid if we replace the plane by the sphere,
S2 = {x ∈ R3 : ||x || = 1}, but not if we replace it by the torus.

Provides a foundation for:

Topological classification of planar regions.
Algorithms for point-in-polygon tests.

Applications in computer graphics and geometric modeling.
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Curves in the Plane

Parity Algorithm

Used to determine if a point lies inside a closed curve.

Steps:
1 Draw a ray from the point in any direction.
2 Count the number of intersections between the ray and the curve.
3 Odd: Point is inside. Even: Point is outside.

Example:

A point inside a triangle will have one intersection.
A point outside a triangle will have zero or an even number of
intersections.
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Curves in the Plane

Example

In practice, we use a polygonal approximation: we specify γ at a finite
number of points and interpolate linearly between them → get a closed
polygon
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Curves in the Plane

Polygon Triangulation

A polygon triangulation divides a simple polygon into triangles by
drawing non-intersecting diagonals.
Properties:

A polygon with n vertices can always be triangulated into n − 2
triangles.
Computational complexity: O(n log n) for simple polygons.

Triangulation is used in computer graphics, finite element methods,
and computational geometry.
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Curves in the Plane

Existence of triangulartions

We need to show that there is at least one diagonal, unless the number of
edges in the polygon is n = 3. We may consider the leftmost vertex, b, of
the polygon.

Either we can connect its two neighbors, a and c

Or we can connect b to the leftmost vertex u that lies inside the
triangular region abc. Drawing this diagonal decomposes the n-gon
into two, an n1-gon and an n2-gon. We have n1 + n2 = n + 2 and
since both are at least three, we also have n1, n2 < n.

Then use induction.
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Curves in the Plane

Winding Number

Measures how many times a curve winds around a given point.

Definition:

w(γ, p) =
1

2π

∫
γ

(x − px)dy − (y − py )dx

(x − px)2 + (y − py )2

Properties:

w(γ, p) = 0: Point lies outside.
w(γ, p) ̸= 0: Point lies inside.
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Curves in the Plane

Visualizing Winding Number
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Curves in the Plane

Applications of Winding Number

Determining interior/exterior of polygons.

Robotics: Path planning around obstacles.

Computer graphics: Texture mapping and clipping.
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