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What is a 2-Manifold?

▶ A 2-manifold (or surface) is a topological space M such that
for every p ∈ M, there exists a neighborhood U ⊆ M and a
homeomorphism ϕ : U → R2.

▶ Intuitively, M locally looks like R2 but may have a more
complex global structure.



Examples

▶
Sphere: S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1},

▶
Torus: T 2 = S1 × S1.



n-manifolds

Similarly, we can define n-manifolds: each point has a
neighborhood that is homeomorphic to an open subset of Rn.

Example

1. The circle S1 is a 1-manifold

2. The 3-sphere S3 = R2 ∪∞ is a 3-manifold.



Compactness

▶ A space M is compact if every open cover {Uα}α∈A of M has
a finite subcover.

▶ Formal definition: ∃α1, α2, . . . , αn ∈ A such that
M ⊆

⋃n
i=1 Uαi .

▶ Compact 2-manifolds are closed (no boundary) and bounded.

Examples

▶ Sphere S2: Compact.

▶ Plane R2: Not compact.



2-Manifolds with Boundary
▶ A 2-manifold with boundary is a surface where each point

has a neighborhood homeomorphic to either:
▶ R2 (interior points), or
▶ H2 = {(x , y) ∈ R2 : y ≥ 0} (boundary points, half-plane).

▶ The boundary ∂M is a (potentially empty) 1-manifold.

Examples

▶ Disk D2 = {(x , y) ∈ R2 : x2 + y2 ≤ 1}.
▶ Möbius strip: A non-orientable manifold with boundary.



Quotient Topology

▶ The quotient topology is a way to construct a new
topological space by identifying points of an existing space
according to an equivalence relation.

▶ Let (X , τ) be a topological space and ∼ an equivalence
relation on X .

▶ The quotient space X/ ∼ is the set of equivalence classes:

X/ ∼= {[x ] : x ∈ X}, [x ] = {y ∈ X : y ∼ x}.

▶ The quotient topology on X/ ∼ is defined as:

U ⊆ X/ ∼ is open if and only if π−1(U) is open in X ,

where π : X → X/ ∼ is the natural projection π(x) = [x ].



Examples

▶ Circle from a Line Segment: [0, 1] with 0 ∼ 1 gives S1.

Line segment Bend

Join ends

▶ Möbius band from a Square:



Examples

▶ Torus from a Square: Identify opposite edges of a square.



Polygon Construction

▶ Let P be a finite-sided convex polygon (in R2) with an even
number of sides.

▶ The sides of the polygon P are arranged into pairs.

▶ Let e and e ′ be two sides of a pair.

▶ Suppose that e runs from (x0, y0) to (x1, y1) and e ′ runs from
(x ′0, y

′
0) to (x ′1, y

′
1).

▶ As t runs from 0 to 1, the point

(1− t)(x0, y0) + t(x1, y1)

lies on e and the point

(1− t)(x ′0, y
′
0) + t(x ′1, y

′
1)

lies on e ′.



Identification of Points on Paired Sides

▶ For each t ∈ [0, 1], we identify the corresponding points on e
and e ′.

▶ There is still a choice regarding the orientation of the sides to
be identified.

▶ We can choose for e to run from (x0, y0) to (x1, y1) or the
other way around.

▶ We encode this choice by drawing an arrow on e, running
from (x0, y0) to (x1, y1).

▶ Once arrows have been drawn on both e and e ′, this
determines how the sides are identified.



Example



Connected Sum
▶ The connected sum M#N of two 2-manifolds M and N is

constructed by removing a disk from each and gluing along
the resulting boundaries.

▶ The genus g of the connected sum is additive:

g(M#N) = g(M) + g(N).

Example



Tangent Space of a Manifold

What is a Tangent Space?

▶ Let M be a smooth n-dimensional manifold. The tangent
space at a point p ∈ M, denoted TpM, is a vector space that
intuitively represents the directions in which one can
tangentially pass through p.

▶ It generalizes the concept of tangent lines and planes to
arbitrary manifolds.



Tangent Space of a Manifold

Formal Definition:

▶ The tangent space TpM is the set of equivalence classes of
smooth curves passing through p.

▶ A smooth curve γ : (−ϵ, ϵ) → M with γ(0) = p determines a
tangent vector at p through its velocity:

v = γ̇(0) ∈ TpM.

Dimension of the Tangent Space:

▶ If M is an n-dimensional manifold, then dim(TpM) = n.

▶ In local coordinates (x1, . . . , xn), a basis for TpM is given by:{
∂

∂x1
, . . . ,

∂

∂xn

}
.



Tangent Space of a Manifold

Properties:

▶ The tangent space TpM is a real vector space.

▶ It depends only on the local geometry of M near p.

▶ A smooth map f : M → N induces a linear map between
tangent spaces:

f∗ : TpM → Tf (p)N,

known as the differential or pushforward.

Visualization:

▶ For a surface M ⊂ R3, the tangent space TpM is the plane
that ”touches” M at p and is spanned by the partial
derivatives of the local parameterization.

▶ Example: For the sphere S2, the tangent space TpS
2 is the

plane perpendicular to the radius vector at p.



Orientation of Vector Spaces

▶ A real vector space V of dimension n is said to be oriented if
we choose an equivalence class of ordered bases.

▶ Two ordered bases (v1, . . . , vn) and (w1, . . . ,wn) are in the
same equivalence class if the change of basis matrix has
det > 0.

▶ If an orientation is chosen, the vector space is called an
oriented vector space.



Determinants and Orientation

▶ The determinant of a basis transformation matrix determines
the orientation:

det(A) > 0 ⇒ same orientation

det(A) < 0 ⇒ opposite orientation

▶ Example: In R2, the standard basis (e1, e2) and (e2, e1) have
opposite orientations.

▶ Applications:
▶ Oriented manifolds.
▶ Integration on manifolds (Stokes’ theorem).
▶ Physics: Right-hand rule in 3D.



Orientability

▶ A manifold M is orientable if it admits a globally consistent
choice of orientation for its tangent spaces.

▶ Equivalently, if every closed curve in M is
orientation-preserving.

Examples

▶ Sphere S2, torus T 2: Orientable.

▶ Möbius strip, Klein bottle: Non-orientable.



Orientation-Preserving and Reversing Curves

▶ A curve γ : [0, 1] → M is orientation-preserving if it does
not reverse the manifold’s orientation.

▶ Example: A loop on the torus.

▶ A curve γ is orientation-reversing if it reverses orientation.

▶ Example: A closed curve on the Möbius strip.



Projective Plane

Definition
The (real) projective plane, denoted by RP2, is the set of all lines
passing through the origin in R3. Formally:

RP2 = {ℓ ⊂ R3 | ℓ is a 1-dimensional subspace of R3}.

Equivalent Construction:
▶ RP2 can also be defined as the set of equivalence classes of

R3 \ {0} under the equivalence relation:

x ∼ y ⇐⇒ x = λy, λ ∈ R \ {0}.

Clearly, each equivalence class corresponds to a unique line
through the origin.

▶ RP2 can also be obtained by identifying antipodal points on
the sphere:

RP2 = S2/ ∼, where p ∼ −p.



Projective Plane



Klein bottle



Klein bottle



Classification of Compact 2-Manifolds

▶ Any compact 2-manifold is homeomorphic to:
▶ A sphere S2,
▶ A connected sum of g tori, or
▶ A connected sum of k projective planes.

▶ Orientable case: Genus g determines the surface.



Triangulation

▶ To triangulate a 2-manifold we decompose it into triangular
regions.

▶ Each region is a disk whose boundary circle is cut at three
points into three paths.

▶ Edges are shared by at most two triangles.

▶ Orientations of triangles must align along shared edges.



Triangulation of the torus



Euler Characteristic

▶ Defined as:
χ = V − E + F ,

where V ,E ,F are the number of vertices, edges, and faces in
a triangulation.

▶ Examples:

χ(S2) = 2, χ(T 2) = 0, χ(RP2) = 1.



Ordered triangles



Enext and Sym Operations on Oriented Triangles
Consider an oriented triangle T = (a, b, c).

▶ The enext operation cyclically permutes the vertices:

enext(T ) = (b, c , a).

▶ The sym operation reverses the orientation:

sym(T ) = (a, c , b).

Properties:
▶ Applying enext three times returns to the original triangle:

enext3(T ) = T .

▶ Applying sym twice returns to the original triangle:

sym2(T ) = T .

▶ The operations commute in the sense that:

enext ◦ sym = sym ◦ enext−1.



Pseudocode

▶ A reference to the triangle consists of a pointer to a node, m,

▶ together with a integer, i ∈ {1, . . . , 6}, identifying the
ordered version of the triangle:

function enext(m,i):

if i <= 2 then

return (m,(i + 1) mod 3)

else

return (m,(i + 1) mod 3 + 4)

endif

function sym(m,i):

return (m,(i + 4) mod 8)



Data structure to store triangulated 2-manifolds

▶ vertices: a linear array V[1..n]

▶ triangles: nodes of a graph

▶ Every triangle has exactly three neighbors → the degree of
every node is three.

▶ Inside a node, we store pointers to the three neighbors as well
as to the three vertices, which are indices into V



Example

▶ abc be a triangle

▶ x , y , z the respective third vertices of the neighbor triangles



Example

Each ordered version of the triangle points to its lead vertex and
the ordered neighbor triangle that shares the directed lead edge.

In the example, assume the nodes µ, µx , µy , µz store the four
triangles. I = 0 corresponds to the ordered versions abc, abx , ayc ,
zbc as drawn above.

Assuming a is stored at positions i in V and observing that ab is
the lead edge of abx , the ordered triangle abc stores pointers
(µ, 0).org = i and (µ, 0).fnext = (µx , 0).

To move around in the triangulation, we use simple functions.

ordTri fnext(µ, I)

return (µ, I).fnext.

int org(µ, I)

return (µ, I).org.



Advanced functions

Then we can perform more advanced processes.
Depth-First-Search:

void Visit(µ)
if µ is unmarked then mark µ; P1;

forall neighbors of µ do

Visit()

endfor; P2

else P3

endif.

where:
P1. steps to be executed the first time the node is visited;
P2. steps to be executed after all children have been processed;
P3. steps to be executed each time the node is revisited.


