Informatics 3

Adim Gyenge

Course information

Format
» Lecture: Tuesday 8.30-10.00
> Webpage:
https://adamgyenge.gitlab.io/teaching/info3/2026/

» Lecture notes on the website (work in progress, be aware of
mistakes)

» Email: Gyenge.Adam@ttk.bme.hu

Content

1. Scientific programming in Python
» Advanced features of NumPy
» Symbolic computations with SymPy
> An outlook to SAGE
» Methods of collaboration: GIT, Scrum

2. Computational topology

> Basics of topology

» Knots and links

» 2-manifolds

» Triangulations and simplicial complexes

Final grade

1. Midterm 1 (on week 6 lecture): 30%

2. Midterm 2 (on week 12 lecture): 30%
3. Project: 30%

>

>
>

»
>
>

Task: solve an actual scientific problem using SymPy (and
possibly other Python libraries)

Some ideas are given in Section 7 of the notes

Output: Jupyter notebook or latex document (+Python source
code), about 3-4 pages [A4]

Can be done in pairs (then 6-8 pages)

Presentation of ideas (2-3 mins): week 6 lab

Final presentation (10-15 mins): week 13 lab

4. Participation: 10%

Introduction to Python in Science

» Python is an open-source, high-level programming language.

> Widely adopted in scientific computing for its simplicity and
versatility.

» Offers extensive libraries for data analysis, visualization, and
computation.

Why Python?
» Easy to learn and use.
» Strong community support.
» Cross-platform compatibility.

Core Libraries in the Ecosystem

Popular Libraries
» NumPy: Numerical computations with multi-dimensional
arrays.
» SciPy: Advanced scientific computing.
» Pandas: Data manipulation and analysis.
> Matplotlib and Seaborn: Data visualization.
» SymPy: Symbolic mathematics.

Introduction to NumPy

» NumPy (Numerical Python) is an open-source library for
numerical computing in Python.

» Created in 2005 by Travis Oliphant by merging features from
two predecessor libraries: Numeric and Numarray.

» Introduced a unified and efficient array object for advanced
mathematical operations.

> Serves as the basis for many other libraries, including SciPy,
pandas, and scikit-learn.

» Widely used in fields such as data analysis, machine learning,
and scientific research.

Core Technology

» NumPy leverages optimized libraries like BLAS (Basic Linear
Algebra Subprograms) and LAPACK (Linear Algebra
PACKage).

» BLAS provides low-level routines for vector and matrix
operations.

» LAPACK builds on BLAS for complex problems, including
solving linear systems and eigenvalue computations.

» Both BLAS and LAPACK are written in highly optimized C
and Fortran, ensuring speed and reliability.

» This reliance on optimized libraries makes NumPy a
cornerstone of high-performance scientific computing.

Key Features of NumPy

» Efficient multi-dimensional array object (ndarray).
» Broad range of mathematical functions.

» Broadcasting and vectorization for performance.

Installing and importing NumPy

1. Install SymPy using pip to get started:
pip install numpy
2. Import SymPy into your Python script as np:

import numpy as np

Creating Arrays

The key data type in NumPy is that of an N-dimensional array
object, called ndarray.

Vector and matrix

= np.array([1, 2, 3])
np.array([[1, 2], [3, 411
Random matrix

= np.random.random((3, 3))

#
v
A
#
B

» Vectors: 1D arrays.
> Matrices: 2D arrays.

» Arrays can be initialized from lists or randomly.

Properties of arrays

» Shape: Specifies the dimensions of the array (e.g., rows and
columns). Accessed using array.shape.

» Data Type (dtype): Defines the type of elements in the
array, such as integers, floats, or complex numbers. Accessed
using array.dtype.

» Size: Total number of elements in the array. Accessed using
array.size.

» Dimension (ndim): Indicates the number of dimensions
(axes) of the array. Accessed using array.ndim.

» Item Size: Memory size (in bytes) of each array element.
Accessed using array.itemsize.

» Memory Layout: Arrays can be stored in row-major (C-style)
or column-major (Fortran-style) order. Accessed using
array.flags.

» Mutability: NumPy arrays are mutable, meaning their
contents can be modified after creation.

» Homogeneity: All elements in a NumPy array must be of the
same data type for efficient computation.

Element-wise Operations

vl = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
result = vl + v2

» Supports element-wise addition, subtraction, multiplication,
etc.

Matrix Multiplication and Transpose

C = np.dot(A, B)
A_T = np.transpose(4)

» Use np.dot () for matrix multiplication.

P Transpose matrices using np.transpose().

Submatrices

submatrix = B[1:, 1:]
column_vector = A[:, 0]

» Extract specific parts of matrices.

» Useful for analyzing large datasets.

Vector and Matrix Norms

vector_norm = np.linalg.norm(v)
matrix_norm = np.linalg.norm(A, ’fro’)

» Measure size or magnitude.

> Vector norms: Length of a vector.

» Frobenius norm: Matrix magnitude.
The result are of type np.float64:

>>> vector_norm
np.float64(3.7416573867739413)

>>> matrix_norm
np.float64(3.872983346207417)

Solving Linear Equations

A = np.array([[2, 1], [1, -3]1D)
np.array([8, 11)
np.linalg.solve(A, b)

x o
nn

» Solve Ax = b using np.linalg.solve().
Result:

>>> x
array([3.57142857, 0.85714286])

Eigenvalues and Eigenvectors

Finding eigenvalues and eigenvectors
A = np.array([[4, -2],
(1, 11D

eigenvalues, eigenvectors = np.linalg.eig(A)
Result:

>>> eigenvalues
array([3., 2.1)

>>> eigenvectors
array ([[0.89442719, 0.70710678],
[0.4472136 , 0.70710678]1]1)

SVD Decomposition

A = np.array([[1, 2],

(3, 41,

[5, 611)
U, S, VT = np.linalg.svd(A)
This gives:
>>> U

array([[-0.2298477 , 0.88346102, 0.40824829],
[-0.52474482, 0.24078249, -0.81649658],
[-0.81964194, -0.40189603, 0.40824829]1])

>>> S

array ([9.52551809, 0.51430058])

>>> VT
array([[-0.61962948, -0.78489445],
[-0.78489445, 0.61962948]])

QR Decomposition

QR decomposition: a matrix A is decomposed into an orthogonal
matrix @ and an upper triangular matrix R, such that

A=QR
In NumPy:

A = np.array([[1, 2, 4], [3, 8, 141, [2, 6, 13]11)

Perform QR decomposition
Q, R = np.linalg.qr(A)

Broadcasting

» One of the most powerful features of NumPy is broadcasting,
which allows arrays of different shapes to be used in
arithmetic operations.

» Instead of reshaping the arrays manually, NumPy
automatically stretches the smaller array along the missing

dimensions.
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]1])
B = np.array([1, 2, 3])

The we can add this 1D array to each row of the matrix

>>> A+B

array([[2, 4, 6],
[5, 7, 9],
[8, 10, 1211)

Vectorization

» Replace loops with array operations.

» Uses optimized C code in the background instead of Python
loops

» Drastically speeds up computations.

Example:

data = np.random.random(1000000)
squared_data = data *x 2

Masked Arrays

» Masked arrays are arrays that allow elements to be masked or
ignored during calculations.

» This is useful in scientific datasets where missing or invalid
data may occur.

Create an array with invalid data
data = np.array([1, 2, -999, 4, 5])

Mask the invalid data (-999)
masked_data = np.ma.masked_values(data, -999)

The result looks in Python as follows.

>>> masked_data
masked_array(data=[1, 2, --, 4, 5],
mask=[False, False, True, False, False],
fill_value=-999)

Masked Arrays

One we have a masked array, we can perform various calculations
on it. For example, let us compute the mean of the data set,
excluding the masked elements:

Calculate the mean, ignoring the masked element
>>> masked_data.mean()
np.float64(3.0)

Masked arrays are particularly important in fields like astronomy
and climate science, where datasets often have missing or invalid
entries due to sensor errors or data corruption.

Memory Mapping

» NumPy supports memory mapping of large arrays stored in
binary files on disk, allowing for partial loading of the data
without loading the entire dataset into memory.

» This feature is useful when working with extremely large
datasets that cannot fit into the available memory.

» Instead of loading the entire array, NumPy accesses only the
required sections, making computations possible on
memory-constrained systems.

filename = ’data.dat’
large_array = np.memmap(filename, dtype=’float32’,
mode=’w+’, shape=(10000, 10000))

Assign values to parts of the array
large_array[:1000, :1000] = np.random.random((1000, 1000))

Flush changes to disk
large_array.flush()

Structured Arrays

> NumPy also supports structured arrays, which allow users to
store heterogeneous data (e.g., mixed types) in a single array.

» Structured arrays can be thought of as NumPy’s version of a
database table or a spreadsheet, where each column can have
different types.

Define a structured data type with fields
dt = np.dtype([(’name’, ’U10’), (’age’, ’i4’),
(’weight’, ’£4°)1)

Create a structured array
people = np.array([(’Alice’, 25, 55.0),
(’Bob’, 30, 85.5)], dtype=dt)

print("Names:", people[’name’])
print("Ages:", people[’age’])
print ("Weights:", people[’weight’])

Advanced Indexing

» In addition to basic slicing, NumPy supports advanced
indexing techniques such as boolean indexing and indexing
with integer arrays.

» These techniques are useful when selecting specific subsets of
data based on conditions or patterns

Create an array of numbers
data = np.array([10, 20, 30, 40, 50])

Boolean indexing: select elements greater than 30
greater_than_30 = data[data > 30]

In-place Operations

arr = np.array([1, 2, 3])
arr += 10

» Modify arrays without creating new ones.

Numerical Methods with SciPy

SciPy Overview:
» SciPy is built on NumPy for high-level scientific computations.

» Provides modules for integration, differentiation, optimization,
and more.

» Commonly used in scientific computing, engineering, and data
analysis.

Modules Discussed:
> Integration: scipy.integrate
» Optimization: scipy.optimize
» Signal/Image Processing: scipy.signal, scipy.ndimage
» Linear Algebra: scipy.linalg
> Statistics: scipy.stats

Numerical Integration
Integration with SciPy:

> scipy.integrate provides functions for definite and
indefinite integrals.

» Example: Definite integral of x> from 0 to 1.

def func(x):
return x**2

result, error = sci.integrate.quad(func, 0, 1)
print (result, error)

Output:

>>> result
0.3333333333333333

>>> error
3.700743415417188e-15

Solving Differential Equations

P> solve_ivp provides tool solving DE's numerically
» Example: Solve dy/dt = —2y.

Define the differential equation dy/dt = -2y
def dydt(t, y):
return -2 * y

Solve the equation with initial condition y(0) =1
solution = integrate.solve_ivp(dydt, [0, 5], [1],
method=’RK45’, t_eval=np.linspace(0, 5, 100))

Arguments:
» Time span [to, tenq] for the solution is [0, 5]
» Initial condition is set to be y(0) = 1.
> The argument method=’"RK45’ specifies the Runge-Kutta
method for integration.
> The argument t_eval gives the time points at which to store
the solution.

Result

Solution of dy/dt = -2y

1.0 4

0.8

0.6

0.4 4

0.2 A

0.0 A

Image Processing

Image Manipulation:

P> scipy.ndimage provides tools for image filtering and
transformations.

» Example: Apply Gaussian blur.
blurred_image = ndimage.gaussian_filter(image, sigma=2)

Use Cases:
» Smoothing images.
» Edge detection.

Statistics with scipy.stats

» Probability theory and statistics.
» Distributions include:
» Continuous: Normal (norm), Exponential (expon), Uniform
(uniform), Beta (beta), etc.
> Discrete: Binomial (binom), Poisson (poisson), Geometric
(geom), etc.

Example:

from scipy.stats import norm

Probability density function (PDF)
x = norm.pdf (0, loc=0, scale=1)

Cumulative distribution function (CDF)
y = norm.cdf (0, loc=0, scale=1)

Generate random samples
samples = norm.rvs(size=1000)

Basic Statistics in scipy.stats

» Descriptive Statistics: mean, median, mode, variance, std.

» Order Statistics: percentileofscore,
scoreatpercentile.

» Moments: moment (e.g., skewness (3rd), kurtosis (4th)).

Example:

from scipy.stats import skew, kurtosis
import numpy as np

Generate data
data = np.random.normal(size=100)

Compute statistics
mean = np.mean(data)
skewness = skew(data)
kurt = kurtosis(data)

Advanced Statistics with scipy.stats

> Hypothesis Testing: ttest_ind, ttest_rel,
chi2_contingency, ks_2samp.

> Correlation Analysis: pearsonr, spearmanr.
» Fit to Data: curve_fit, kde.
» ANOVA: f_oneway for one-way ANOVA.

Example:

from scipy.stats import ttest_ind, pearsonr

Two-sample t-test
result = ttest_ind([1, 2, 3], [4, 5, 6])

Correlation coefficient
corr, p_value = pearsonr([1, 2, 3], [1, 2, 4])

Linear Algebra

Eigenvalues and Eigenvectors:
» scipy.linalg extends NumPy for advanced linear algebra.

» Example: Compute eigenvalues and eigenvectors.

eigenvalues, eigenvectors = scipy.linalg.eig(matrix)
print(eigenvalues, eigenvectors)

LU Decomposition

Matrix Factorization:
» Decompose a matrix into P, L, U.

» Useful for solving linear systems.

P, L, U = scipy.linalg.lu(matrix)
print(L, U)

Sparse Matrices

A sparse matrix or sparse array is a matrix in which most of the
elements are zero.
Efficient Matrix Representation:

» scipy.sparse for handling large, sparse datasets.
» Example: Create and manipulate sparse matrices.

sparse_matrix = csr_matrix(dense_matrix)
transpose = sparse_matrix.transpose()

	Introduction
	NumPy
	Getting Started
	Basic Operations
	Advanced Features
	Matrix Decompositions
	Advanced Functionalities

